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Last time, we have seen

• A Tits Alternative

• Contraction properties that imply strong proximality.

• For a dendrite X , Homeo(X ) is a Polish group.

• If branch points are dense, Homeo(X )→ Sym(Br(X )) is an

embedding.

• The two topologies coincide.

• If S ⊂ {3, 4, . . . ,∞} is finite, F ,F ′ ⊂ DS finite and

< F >'< F ′ > then ∃g ∈ Homeo(DS) such g extends the

graph isomorphism.
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Oligomorphy

Definition

A group action G y X is oligomorphic if for any n ∈ N, The

action diagonal action G y X n has finitely many orbits.

Theorem

If S is finite then the action of Homeo(DS) on DS is oligomorphic.
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Property (OB)

Definition

A group has property (OB)

if any isometric action on metric space

has bounded orbits.

Remark

Property (OB) implies property (FA), (FH) for example.

Remark

By a theorem of Struble, any locally compact second countable

group has a proper left invariant metric.

Theorem (D.-Monod)

The group Homeo(DS) has property (OB). Moreover, if S is finite

it has property (T) with its Polish topology.
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Some simple dendrite groups

Theorem (D.-Monod)

The groups Homeo(DS) are simple

and pairwise non-isomorphic.
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Steps of the proof of simplicity

1. Homeo(DS) is generated by stabilizers of points of a given

order.

2. Homeo(DS) is generated by pointwise stabilizers of branches

around branch points.

3. If 1 6= N C Homeo(DS) then N is dendrominimal.

4. N has some austro-boreal element n.

5. Let C be a branch. We may assume the austro-boreal arc I is

in C .

6. Constructing homeomorphisms by patching.

7. If g fixes pointwise C then g = [n, h] for some well-chosen h.
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Ideas to prove the groups are non-isomorphic

Idea: Recover the dendrite from algebraic data.

1. Stabilizers of points are maximal subgroups.

2.

Stab(x) '

(∏
C∈x̂

Homeo(C )

)
o Sym(x̂).

3. An isomorphism Homeo(DS)→ Homeo(DS ′) maps stabilizers

of points to stabilizers of points with the same order.

4. This induces a map ϕ : DS → DS ′ .

5. It commutes with the center maps

6. Thus it is continuous.

7. ϕ is a homeomorphism.
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Genericity

Definition

Let G be a Polish group. An element g ∈ G is generic if its

conjugacy class is comeager.

Proposition (D.)

The Polish group Homeo(DS) has a dense orbit if and only if

S = {∞}

Theorem

The Polish group Homeo(D∞) has a comeager conjugacy class.

Question

Is there a simple description of the generic elements ?
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Kaleidoscopic groups



Burger-Mozes universal groups for regular trees.

Let Td be the d-regular tree with d ≥ 3.

Let H ≤ Aut(Td) acting

transitively on vertices. The local action at x is the permutation

group given by the action of Hx on edges attached to x .

For any Γ ≤ Sym([d ]), there is a ”universal” group Ud(Γ) with local

action given by Γ.
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Colorings

Let x ∈ Br(Dn), we denote by x̂ the set π0 (Dn \ {x}).

Definition

A coloring of Dn is a map

c : tx∈Br(Dn) x̂ → [n]

such that c|x̂ : x̂ → [n] is a bijection. A coloring is kaleidoscopic if

for any x 6= y ∈ Br(Dn) and i 6= j ∈ [n], there is z ∈]x , y [ such

that c(Uz(x)) = i and c(Uz(y)) = j .

z
x y

i j

9
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Existence of kaleidoscopic colorings

Proposition (D.-Monod-Wesolek)

For any n, the set of kaleidoscopic colorings is a dense Gδ in the

space of all colorings of Dn.
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Uniqueness of kaleidoscopic colorings

Theorem (D.-Monod-Wesolek)

Let X ,Y be dendrites homeomorphic to Dn and c and d be

kaleidoscopic colorings of X and Y , respectively. Then there exists

a homeomorphism h : X → Y such that d ◦ h = c.

Furthermore, let e0, e1 ∈ X be distinct end points and likewise

f0, f1 ∈ Y . Let x ∈ [e0, e1] and y ∈ [f0, f1] be branch points with

cx(ei ) = dy (fi ) for i = 0, 1. Then h can be chosen such that

h(ei ) = fi for i = 0, 1 and such that h(x) = y.
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Local action

Definition

Let c be a coloring of Dn. The local action of g ∈ Homeo(Dn) at

x ∈ Br(Dn) is the element σc(g , x) of Sym([n]) defined by the

cocycle

σc : Homeo(Dn)×Br(Dn) −→ Sym([n]), σc(g , x) := cg(x)◦g◦c−1x

12



Kaleidoscopic groups

Definition

Let c be a coloring of Dn. For any permutation group Γ ≤ Sym(n),

the group with local action Γ is defined to be

Kc(Γ) = {g ∈ Homeo(Dn) : ∀x ∈ Br(Dn), σc(g , x) ∈ Γ}.

When c is a kaleidoscopic coloring, we call Kc(Γ) a kaleidoscopic

group with local action Γ.
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Examples of Kaleidoscopic groups

• K({1}) is the subgroup of Gn that preserves the coloring c.

• K(Sym([n])) is simply Gn itself.
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Main properties of Kaleidoscopic groups

Theorem (D.-Monod-Wesolek)

(i) The abstract group K(Γ) is simple and uniformly perfect.

(ii) The permutation group K(Γ) is always primitive; it is doubly

transitive if and only if Γ is transitive.

(iii) The permutation group K(Γ) is never doubly primitive: its

point-stabilizers admit a system of imprimitivity isomorphic to

Γ and decompose as permutational wreath product over Γ.
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