Dendrites and groups acting on them III

Bruno Duchesne (Institut Elie Cartan, Nancy, France) Into the forest summer school, Technion 2019 • A Tits Alternative

- A Tits Alternative
- Contraction properties that imply strong proximality.

- A Tits Alternative
- Contraction properties that imply strong proximality.
- For a dendrite X, Homeo(X) is a Polish group.

- A Tits Alternative
- Contraction properties that imply strong proximality.
- For a dendrite X, Homeo(X) is a Polish group.
- If branch points are dense, $Homeo(X) \rightarrow Sym(Br(X))$ is an embedding.

- A Tits Alternative
- Contraction properties that imply strong proximality.
- For a dendrite X, Homeo(X) is a Polish group.
- If branch points are dense, Homeo(X) → Sym(Br(X)) is an embedding.
- The two topologies coincide.

- A Tits Alternative
- Contraction properties that imply strong proximality.
- For a dendrite X, Homeo(X) is a Polish group.
- If branch points are dense, Homeo(X) → Sym(Br(X)) is an embedding.
- The two topologies coincide.
- If S ⊂ {3,4,...,∞} is finite, F, F' ⊂ D_S finite and
 < F > ≃ < F' > then ∃g ∈ Homeo(D_S) such g extends the graph isomorphism.

A group action $G \curvearrowright X$ is oligomorphic if for any $n \in \mathbf{N}$, The action diagonal action $G \curvearrowright X^n$ has finitely many orbits.

Theorem

If S is finite then the action of $Homeo(D_S)$ on D_S is oligomorphic.

A group has property (OB)

A group has property (OB) if any isometric action on metric space has bounded orbits.

A group has property (OB) if any isometric action on metric space has bounded orbits.

Remark

Property (OB) implies property (FA), (FH) for example.

A group has property (OB) if any isometric action on metric space has bounded orbits.

Remark

Property (OB) implies property (FA), (FH) for example.

Remark

By a theorem of Struble, any locally compact second countable group has a proper left invariant metric.

A group has property (OB) if any isometric action on metric space has bounded orbits.

Remark

Property (OB) implies property (FA), (FH) for example.

Remark

By a theorem of Struble, any locally compact second countable group has a proper left invariant metric.

Theorem (D.-Monod)

The group Homeo(D_S) has property (OB).

A group has property (OB) if any isometric action on metric space has bounded orbits.

Remark

Property (OB) implies property (FA), (FH) for example.

Remark

By a theorem of Struble, any locally compact second countable group has a proper left invariant metric.

Theorem (D.-Monod)

The group Homeo (D_S) has property (OB). Moreover, if S is finite it has property (T) with its Polish topology.

Theorem (D.-Monod)

The groups $Homeo(D_S)$ are simple

Theorem (D.-Monod)

The groups $Homeo(D_S)$ are simple and pairwise non-isomorphic.

1. Homeo (D_S) is generated by stabilizers of points of a given order.

- 1. Homeo (D_S) is generated by stabilizers of points of a given order.
- 2. Homeo(D_S) is generated by pointwise stabilizers of branches around branch points.

- 1. Homeo (D_S) is generated by stabilizers of points of a given order.
- 2. Homeo (D_S) is generated by pointwise stabilizers of branches around branch points.
- 3. If $1 \neq N \lhd \text{Homeo}(D_S)$ then N is dendrominimal.

- 1. Homeo (D_S) is generated by stabilizers of points of a given order.
- 2. Homeo (D_S) is generated by pointwise stabilizers of branches around branch points.
- 3. If $1 \neq N \lhd \text{Homeo}(D_S)$ then N is dendrominimal.
- 4. N has some austro-boreal element n.

- 1. Homeo (D_S) is generated by stabilizers of points of a given order.
- 2. Homeo (D_S) is generated by pointwise stabilizers of branches around branch points.
- 3. If $1 \neq N \triangleleft \text{Homeo}(D_S)$ then N is dendrominimal.
- 4. N has some austro-boreal element n.
- 5. Let C be a branch. We may assume the austro-boreal arc I is in C.

- 1. Homeo (D_S) is generated by stabilizers of points of a given order.
- 2. Homeo (D_S) is generated by pointwise stabilizers of branches around branch points.
- 3. If $1 \neq N \triangleleft \text{Homeo}(D_S)$ then N is dendrominimal.
- 4. N has some austro-boreal element n.
- 5. Let C be a branch. We may assume the austro-boreal arc I is in C.
- 6. Constructing homeomorphisms by patching.

- 1. Homeo (D_S) is generated by stabilizers of points of a given order.
- 2. Homeo (D_S) is generated by pointwise stabilizers of branches around branch points.
- 3. If $1 \neq N \lhd \text{Homeo}(D_S)$ then N is dendrominimal.
- 4. N has some austro-boreal element n.
- 5. Let C be a branch. We may assume the austro-boreal arc I is in C.
- 6. Constructing homeomorphisms by patching.
- 7. If g fixes pointwise C then g = [n, h] for some well-chosen h.

Ideas to prove the groups are non-isomorphic

Idea: Recover the dendrite from algebraic data.

Ideas to prove the groups are non-isomorphic

Idea: Recover the dendrite from algebraic data.

1. Stabilizers of points are maximal subgroups.

Ideas to prove the groups are non-isomorphic

Idea: Recover the dendrite from algebraic data.

2.

1. Stabilizers of points are maximal subgroups.

$$\mathsf{Stab}(x)\simeq \left(\prod_{C\in \hat{x}}\mathsf{Homeo}(C)
ight)
times\mathsf{Sym}(\hat{x}).$$

2.

1. Stabilizers of points are maximal subgroups.

$$\mathsf{Stab}(x) \simeq \left(\prod_{C \in \hat{x}} \mathsf{Homeo}(C)\right) \rtimes \mathsf{Sym}(\hat{x}).$$

3. An isomorphism $Homeo(D_S) \rightarrow Homeo(D_{S'})$ maps stabilizers of points to stabilizers of points with the same order.

1. Stabilizers of points are maximal subgroups.

$$\mathsf{Stab}(x) \simeq \left(\prod_{C \in \hat{x}} \mathsf{Homeo}(C)\right) \rtimes \mathsf{Sym}(\hat{x}).$$

- 3. An isomorphism Homeo $(D_S) \rightarrow$ Homeo $(D_{S'})$ maps stabilizers of points to stabilizers of points with the same order.
- 4. This induces a map $\varphi \colon D_S \to D_{S'}$.

2.

1. Stabilizers of points are maximal subgroups.

$$\mathsf{Stab}(x) \simeq \left(\prod_{C \in \hat{x}} \mathsf{Homeo}(C)\right) \rtimes \mathsf{Sym}(\hat{x}).$$

- 3. An isomorphism Homeo $(D_S) \rightarrow$ Homeo $(D_{S'})$ maps stabilizers of points to stabilizers of points with the same order.
- 4. This induces a map $\varphi \colon D_S \to D_{S'}$.

2.

5. It commutes with the center maps

1. Stabilizers of points are maximal subgroups.

$$\mathsf{Stab}(x) \simeq \left(\prod_{C \in \hat{x}} \mathsf{Homeo}(C)\right) \rtimes \mathsf{Sym}(\hat{x}).$$

- 3. An isomorphism Homeo $(D_S) \rightarrow$ Homeo $(D_{S'})$ maps stabilizers of points to stabilizers of points with the same order.
- 4. This induces a map $\varphi \colon D_S \to D_{S'}$.
- 5. It commutes with the center maps
- 6. Thus it is continuous.

2.

1. Stabilizers of points are maximal subgroups.

$$\mathsf{Stab}(x) \simeq \left(\prod_{C \in \hat{x}} \mathsf{Homeo}(C)\right) \rtimes \mathsf{Sym}(\hat{x}).$$

- 3. An isomorphism Homeo $(D_S) \rightarrow$ Homeo $(D_{S'})$ maps stabilizers of points to stabilizers of points with the same order.
- 4. This induces a map $\varphi \colon D_S \to D_{S'}$.
- 5. It commutes with the center maps
- 6. Thus it is continuous.

2.

7. φ is a homeomorphism.

Let G be a Polish group. An element $g \in G$ is generic if its conjugacy class is comeager.

Let G be a Polish group. An element $g \in G$ is generic if its conjugacy class is comeager.

Proposition (D.)

The Polish group Homeo(D_S) has a dense orbit if and only if $S = \{\infty\}$

Theorem

The Polish group Homeo (D_{∞}) has a comeager conjugacy class.

Question

Is there a simple description of the generic elements ?

Kaleidoscopic groups

Let T_d be the *d*-regular tree with $d \ge 3$.

Let T_d be the *d*-regular tree with $d \ge 3$. Let $H \le \operatorname{Aut}(T_d)$ acting transitively on vertices. The local action at x is the permutation group given by the action of H_x on edges attached to x.

Let T_d be the *d*-regular tree with $d \ge 3$. Let $H \le \operatorname{Aut}(T_d)$ acting transitively on vertices. The local action at x is the permutation group given by the action of H_x on edges attached to x.

For any $\Gamma \leq \text{Sym}([d])$, there is a "universal" group $U_d(\Gamma)$ with local action given by Γ .

Let $x \in Br(D_n)$, we denote by \hat{x} the set $\pi_0(D_n \setminus \{x\})$.

Let $x \in Br(D_n)$, we denote by \hat{x} the set $\pi_0(D_n \setminus \{x\})$. **Definition** A coloring of D_n is a map

$$c: \sqcup_{x \in \mathsf{Br}(D_n)} \hat{x} \to [n]$$

such that $c|_{\hat{x}} : \hat{x} \to [n]$ is a bijection.

Let $x \in Br(D_n)$, we denote by \hat{x} the set $\pi_0(D_n \setminus \{x\})$. **Definition** A coloring of D_n is a map

$$c: \sqcup_{x \in \mathsf{Br}(D_n)} \hat{x} \to [n]$$

such that $c|_{\hat{x}} \colon \hat{x} \to [n]$ is a bijection. A coloring is kaleidoscopic if

Let $x \in Br(D_n)$, we denote by \hat{x} the set $\pi_0(D_n \setminus \{x\})$. **Definition** A coloring of D_n is a map

$$c: \sqcup_{x \in \operatorname{Br}(D_n)} \hat{x} \to [n]$$

such that $c|_{\hat{x}}: \hat{x} \to [n]$ is a bijection. A coloring is kaleidoscopic if for any $x \neq y \in Br(D_n)$ and $i \neq j \in [n]$, there is $z \in]x, y[$ such that $c(U_z(x)) = i$ and $c(U_z(y)) = j$.

Proposition (D.-Monod-Wesolek)

For any n, the set of kaleidoscopic colorings is a dense G_{δ} in the space of all colorings of D_n .

Let X, Y be dendrites homeomorphic to D_n and c and d be kaleidoscopic colorings of X and Y, respectively. Then there exists a homeomorphism $h: X \to Y$ such that $d \circ h = c$.

Let X, Y be dendrites homeomorphic to D_n and c and d be kaleidoscopic colorings of X and Y, respectively. Then there exists a homeomorphism $h: X \to Y$ such that $d \circ h = c$.

Furthermore, let $e_0, e_1 \in X$ be distinct end points and likewise $f_0, f_1 \in Y$. Let $x \in [e_0, e_1]$ and $y \in [f_0, f_1]$ be branch points with $c_x(e_i) = d_y(f_i)$ for i = 0, 1. Then h can be chosen such that $h(e_i) = f_i$ for i = 0, 1 and such that h(x) = y.

Definition

Let c be a coloring of D_n . The local action of $g \in \text{Homeo}(D_n)$ at $x \in Br(D_n)$ is the element $\sigma_c(g, x)$ of Sym([n]) defined by the cocycle

 σ_c : Homeo $(D_n) \times Br(D_n) \longrightarrow Sym([n]), \quad \sigma_c(g, x) := c_{g(x)} \circ g \circ c_x^{-1}$

Definition

Let c be a coloring of D_n . For any permutation group $\Gamma \leq Sym(n)$, the group with local action Γ is defined to be

 $\mathcal{K}_{c}(\Gamma) = \{g \in \operatorname{Homeo}(D_{n}) : \forall x \in \operatorname{Br}(D_{n}), \ \sigma_{c}(g, x) \in \Gamma\}.$

Definition

Let c be a coloring of D_n . For any permutation group $\Gamma \leq Sym(n)$, the group with local action Γ is defined to be

 $\mathcal{K}_c(\Gamma) = \{g \in \operatorname{Homeo}(D_n) : \forall x \in \operatorname{Br}(D_n), \ \sigma_c(g, x) \in \Gamma\}.$

When c is a kaleidoscopic coloring, we call $\mathcal{K}_c(\Gamma)$ a kaleidoscopic group with local action Γ .

• $\mathcal{K}(\{1\})$ is the subgroup of G_n that preserves the coloring c.

- $\mathcal{K}(\{1\})$ is the subgroup of G_n that preserves the coloring c.
- $\mathcal{K}(\text{Sym}([n]))$ is simply G_n itself.

(i) The abstract group $\mathcal{K}(\Gamma)$ is simple and uniformly perfect.

- (i) The abstract group $\mathcal{K}(\Gamma)$ is simple and uniformly perfect.
- (ii) The permutation group $\mathcal{K}(\Gamma)$ is always primitive; it is doubly transitive if and only if Γ is transitive.

- (i) The abstract group $\mathcal{K}(\Gamma)$ is simple and uniformly perfect.
- (ii) The permutation group $\mathcal{K}(\Gamma)$ is always primitive; it is doubly transitive if and only if Γ is transitive.
- (iii) The permutation group K(Γ) is never doubly primitive: its point-stabilizers admit a system of imprimitivity isomorphic to Γ and decompose as permutational wreath product over Γ.

- (i) The abstract group $\mathcal{K}(\Gamma)$ is simple and uniformly perfect.
- (ii) The permutation group $\mathcal{K}(\Gamma)$ is always primitive; it is doubly transitive if and only if Γ is transitive.
- (iii) The permutation group K(Γ) is never doubly primitive: its point-stabilizers admit a system of imprimitivity isomorphic to Γ and decompose as permutational wreath product over Γ.