DENDRITES AND GROUPS ACTING ON THEM: EXERCISES

INTO THE FOREST SUMMER SCHOOL, TECHNION 2019

Exercise 1: Branches are open. Let X be a dendron. Prove that branches (i.e. connected components of the complement of a point) are open.

Exercise 2: Dendrons and dendrites. Prove that a dendron is a dendrite if and only if it is separable. You may show that some countable collections of branches is a basis for the topology and use the particular case of Uryshon's metrization theorem: A compact hausdorff space is metrizable if and only if it is second countable.

Exercise 3: Convexity and connectedness. Let *X* be a dendrite and $C \subseteq X$. Prove that *C* is connected if and only if it is convex (i.e. $\forall x, y \in C$, $[x, y] \subseteq C$).

Exercise 4: Continuity of the center map. Let *X* be dendrite. Prove that the center map $c: X^3 \to X$ is continuous.

Exercise 5: No free arc. A *free arc* is an arc (not reduced to a point) whose interior is open in X, equivalently this interior does not meet Br(X). For any dendrite X not reduced to a point, show that the following conditions are equivalent:

- (i) *X* has no free arc.
- (ii) Br(X) is dense in *X*.
- (iii) Ends(X) is dense in X.

Exercise 6: Ends points are generic points. Show that in a dendrite *X* without free arcs, Ends(X) is comeager (i.e. it is a dense countable intersection of open subsets).

Exercise 7: The fixed point property for dendrites. Prove that any homeomorphism of a dendrite has a fixed point (many direct or indirect proofs are possible).

Exercise 8: Convex hull and end points. Let *X* be a dendrite and $M \subseteq X$ be a closed subspace. Show that $Ends([M]) \subseteq M$ where [M] is the smallest subdendrite containing *M* (its closed convex hull).

Exercise 9: Actions of products are elementary. Let $G_1 \times G_2$ be a group product acting on a dendrite. Prove that at least one of the factors acts elementarily. Hints: Assume that G_1 acts non-elementarily, consider the unique G_1 -invariant subdendrite and show this is an arc or a point.

Exercise 10: Strong proximality. Let *X* be a dendrite and *G* be a group acting dendrominimally.

B. DUCHESNE

- (i) Show that for any two branches around non-end points U_1, U_2 then there is $g \in G$ such that $g(U_1) \subseteq U_2$.
- (ii) Show that if moreover the action is non-elementary then there are uncountably many end points.
- (iii) Prove that a non-elementary dendro-minimal action is strongly proximal.

Exercise 11: Bijections preserving the center map. Let *X* be a dendrite without free arcs. Let $f: Br(X) \rightarrow Br(X)$ be a bijection. Prove that *f* is the restriction of some homeomorphism of *X* if and only if *f* commutes with the center map: f(c(x, y, z)) = c(f(x), f(y), f(z)) for all branch points *x*, *y*, *z*.

Exercise 12: Topologies. Let *X* be a dendrite without free arcs. Prove that the compact-open topology (i.e. the uniform convergence topology) coincides with the topology of pointwise convergence topology on the set of branch points.

Exercise 13: Maximal subgroups. Let G_S = Homeo(D_S) where $S \subseteq \{3, 4, ..., \infty\}$ and D_S is the associated Wazewski dendrite. Prove that stabilizers of points are maximal subgroups.