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Abstract

These are lecture notes for the course “Topics in Topological Groups”
taught in Fall 2019. The notes are heavily based on Terry Tao’s book
“Hilbert’s Fifth Problems and Related Topics”, and do not make any
substantial modification of this text, except for a slight reorganization.
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1 Introduction

1.1 The Basics

1.1.1 Basic definitions and examples

Definition 1.1. A topological group is a group G with a topology such that
the multiplication function ⋅ ∶ G ×G → G and the inverse function −1 ∶ G → G
are continuous.

Example 1.2. Examples of topological groups include:

1. Any group with the discrete/trivial topology

2. (R,+), (R/Z,+), GL(n,R), . . . with their standard topology. (These are
groups which are also smooth manifolds with smooth operations. Such
groups are called Lie groups)

3. Subgroup and quotients of topological groups are topological groups.

4. For a prime p, the p-adic integers Zp with their topology. Recall that on
Z we can define the following norm

∣a∣p =
⎧⎪⎪⎨⎪⎪⎩

0 if a = 0

p−k if a =mpk and gcd(m,p) = 1
.

The p-adic integers Zp is the metric completion of Z with respect to the
metric dp(a, b) = ∣a − b∣p.

Exercise 1.3. Show that the addition and multiplication operations of Z
extend continuously to Zp and the (Zp,+) is a topological group.

5. (H,+) for a Hilbert space H with its metric or weak topologies.

Example 1.4. Non-examples of topological groups include:

1. Infinite groups with the cofinite topology. Recall that this is the topology
in which the closed sets are the finite subsets and the whole set.

2. (R`,+) where R` is R with the topology generated by the half-closed in-
tervals {[a, b) ∶ a < b}.

In this course we will focus on locally compact topological groups.

Definition 1.5. A topological space is locally compact if every point has a
compact neighborhood. 1

Exercise 1.6. Which of the above examples is locally compact?

Another important example of a group topology is the following:

1By neighborhood we always mean a subset which contains a (given) point in its interior.
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Definition 1.7. Let G be a group, the profinite topology on G is the topology
generated by the basis consisting of all left cosets of all finite index subgroups
of G.

Exercise 1.8. Show that this is indeed a basis for a group topology, and that
the basis sets are clopen (i.e. closed and open)

Theorem 1.9 (Euclid). There are infinitely many prime numbers.

Here is the proof of this theorem by Fürstenberg using the profinite topology
on Z.

Proof. Assume that there are finitely many primes, p1, . . . , pn. Then, by defini-
tion

Z − {±1} = p1Z ∪⋯ ∪ pnZ.
By the exercise above each of piZ is closed, and thus {±1} is open, contradicting
the fact that all basis sets are infinite.

1.1.2 Basic properties

Lemma 1.10. Let G be a topological group and let g ∈ G. The following func-
tions are homeomorphisms:

• the inverse function −1 ∶ G→ G;

• the left (resp. right) multiplication map Lg ∶ G → G (resp. Rg ∶ G → G)
defined by Lg(h) = gh (resp. Rg(h) = hg−1);

• and the conjugation map cg ∶ G→ G defined by cg(h) = ghg−1.

Proof. They are all continuous by definition and the maps −1, Lg−1 , ( Rg−1 , ) cg−1
are their respective continuous inverses.

Exercise 1.11. The topology of a topological group is fully defined by its
identity neighborhood basis.

1.2 Inverse Limits

An important example of topological groups comes from the construction of
inverse limits.

Definition 1.12. A directed set (I,≤) is a poset such that for all i, j ∈ I there
exists k ∈ I such that i, j ≤ k.

An inverse system of (topological) groups G = ({Gi}i∈I ,{fij}i≤j∈I) is a set of
groups Gi indexed by a directed set (I,≤), and a set of (continuous) surjective
homorphisms fij ∶ Gj → Gi for all i ≤ j, such that:

1. fii = id for all i ∈ I

2. fik = fij ○ fjk for all i ≤ j ≤ k ∈ I.
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The inverse limit (or projective limit) of G is the group

lim←ÐGi = {(gi)i∈I ∈ ∏
i∈I

Gi ∣ ∀i ≤ j, fij(gj) = gi}

The inverse limit is endowed with the subset topology of the product space

∏i∈I Gi

It is often the case that the directed set is simply (N,≤), in which case it
suffices to describe the maps fn,n+1 ∶ Gn+1 → Gn.

Example 1.13. • Infinite products can be seen as inverse limits of finite
products. For example, ∏Gn = lim←ÐG1 × . . . × Gn here the index set is
N and the nth group is G1 × . . . ×Gn, with the obvious projection maps
between them.

• A more interesting example is the p-adic integers. Again, indexed over N,
consider Gn = Z/pnZ, let fnm be the obvious quotient map Z/pmZ→ Z/pnZ.

Exercise 1.14. Prove Zp = lim←Ð
Z/pnZ.

• The Solenoid is the following inverse limit: Consider Gn = R/pnZ, and the
natural maps (alternatively, think of Gn as R/Z and the maps fn,n+1(x) =
p ⋅ x).

Exercise 1.15. Show that (Zp×R)/∆Z = lim←ÐGn where ∆Z = {(n,n) ∣ n ∈
Z}.

• ConsiderGn = Z/nZ indexed by the directed set (N, ∣) (where ∣ is divisibility)

Exercise 1.16. What is lim←ÐGn? Is the image of Z → lim←ÐGn dense?

(Hint: Chinese Remainder Theorem)

Exercise 1.17 (Pro-finite completion). Let G be a residually-finite group (i.e.
∀1 ≠ g ∈ G there exists a finite quotient φ ∶ G → Q such that φ(g) ≠ 1). Form
the inverse limit lim←Ð

G/N ranging over all finite index subgroups of G. Show

that G → lim←Ð
G/N is injective with dense image. This inverse limit is called the

profinite completion of G

Exercise 1.18 (The universal property of lim←ÐGi). Show that lim←ÐGi and its
projection maps fi ∶ lim←ÐGi → Gi satisfy the following universal property: For

every (topological) group G, and maps φi ∶ G → Gi such that for all i ≤ j,
φi = fij ○ φj . There exists a unique (continuous) homomorphism φ ∶ G → lim←ÐGi
such that φi = fi ○ φ for all i ∈ I.

Exercise 1.19. Show that if the group Gi are locally compact, and the kernels
of the maps fij are compact, then lim←ÐGi is locally compact.
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Lemma 1.20 (A criterion for inverse limit). Let G be a locally compact Haus-
dorff topological group, let (N ,⪯) be a directed set of normal compact subgroups
of G, such that N ⪯ N ′ if N ≥ N ′, and such that for all identity neighborhood
U there exists N ∈ N such that N ⊆ U , then G ≃ lim←ÐN∈N

G/N.

Proof. The morphisms G → G/N induce a morphism φ ∶ G → lim←ÐN∈N

G/N. It

remains to show that this map is a homeomorphism - i.e it remains to show
that it is an open bijection.

Since G is Hausdorff, for every 1 ≠ g ∈ G, there exists an open identity
neighborhood U such that g ∉ U . We conclude that there exists N ⊆ U and
g ∉ N , so φ(g) ≠ φ(1). This shows that φ is injective.

Now, consider an identity neighborhood U0/N0 ⊂ G/N0. That is, U0 is an
identity neighborhood in G such that U0N0 = U0.

Claim. φ(U) is dense in (lim←ÐN∈N

G/N) ∩ π−1
N0

(U0/N0).

To see this, let

V = ( lim←Ð
N∈N

G/N) ∩ π−1
N (U0/N0) ∩ π−1

1 (U1/N1) ∩ . . . ∩ π−1
k (Uk/Nk)

be a non-empty open set in (lim←ÐN∈N

G/N)∩π−1
N0

(U0/N0). Let N ′ ∈ N be a compact

normal subgroup such that N ′ ≤ N0 ∩N1 ∩ . . .∩Nk. Since V is non-empty there
exists gN ′ ∈ G/N ′ such that φNiN ′ ∈ Ui/Ni for all i = 0,1, . . . , k. This means that
gN ′ ∩ U0 ∩ U1 . . . ∩ Uk ≠ ∅. But since UiN

′ = Ui for all i = 0,1, . . . , k, we get
g ∈ U0 ∩U1 . . . ∩Uk, and hence φ(g) ∈ V .

From the claim we get in particular that φ(G) is dense in lim←ÐN∈N

G/N.

But also, we can deduce that φ is a local homeomorphism: if U0 is a compact
identity neighborhood and N0 ∈ N is such that N0 ⊆ U0, we may assume without
loss of generality that U0 = U0N0 (both U0 and N0 are compact, and thus so
is there product). Then φ(U0) is dense in V ∶= (lim←ÐN∈N

G/N) ∩ π−1
N0

(U0/N0).
Since U0 is compact, and V is Hausdorff (this will be explained later), and the
map φ∣U0 is an injective continuous map with dense image in V , we deduce
that φ∣U0 ∶ U0 → V is a homeomorphism. Therefore, we get a homeomorphism
φ∣U ′ ∶ U ′ → V ′ where U ′, V ′ are open identity neighborhoods (by restricting φ∣U0

to the preimage of the interior of V ).
In particular, the image of φ(G) contains an open set, hence φ(G) is open,

and hence closed. But since φ(G) is dense, we get that φ is onto.
Now, φ is open, as every U can be seen as ⋃g∈U gUg where Ug ⊆ U ′ is an

open identity neighborhood. By the homomorphism property,

φ(U) = φ(⋃
g∈U

gUg) = ⋃
g∈U

φ(g)φ(Ug)

and by the above discussion φ(Ug) are open, and thus so are φ(g)φ(Ug).
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1.3 Course objective

In the next Chapters we will establish the following remarkable structure theo-
rem for a locally compact group G.

Theorem 1.21 (Gleason-Yamabe). Let G be a locally compact topological group.
Then G has an open subgroup G′ such that for all open identity neighborhood
U ⊆ G, there exists a normal closed subgroup N �G′ contained in U , such that
G′/N is a Lie group.

In particular, every locally compact Hausdorff group has an open subgroup
which is an inverse limit of Lie groups.

The structure of Lie groups is a well-studied area of math, and should be
the focus of an independent course. However, note that for that theorem we
include under Lie groups all discrete groups.

Example 1.22. Let G = Qp⋊φZ where φ ∶ Z→ Aut(Qp) is given by φ(k)x = pkx
for all k ∈ Z and x ∈ Qp. Let U = Zp × 1 ≤ G be an open identity neighborhood.
Then G does not contain a non-trivial normal subgroup in U , as the conjugation
by the subgroup 1×Z will eventually move every non-trivial element of U outside
U . This shows that one has to pass to an open subgroup G′ ≤ G, for example
G′ = Zp which is an inverse limit.

In particular, we will be able to deduce the following solution of Hilbert’s
Fifth Problem. A topological manifold is a Hasudorff space which is locally
homeomorphic to Rn. A group is locally Euclidean if it is a topological manifold.

Theorem 1.23 (Montgomery-Zippin,Gleason). If G is a locally Euclidean topo-
logical group then G is a Lie group.

On the way, we will see many fundamental theorems about topological group,
which are of great importance on their own right – such as the existence and
uniqueness of the Haar measure, Peter-Weyl Theorem, van Danzig Lemma, . . .
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2 Building-Up Separation

2.1 Separation axioms (and uniform structure)

We recall the following separation axioms:

Definition 2.1. A topological space X is

T0 if for every x, y ∈ X there exists an open set U such that y ∉ U ∋ x or
x ∉ U ∋ y.

T1 if for every x, y ∈ X there exists an open set U such that y ∉ U ∋ x. (or
alternatively, if every point is closed)

T2 or Hausdorff if for every x, y ∈ X there exist disjoint open sets U,V such
that x ∈ U, y ∈ V .

T3 or (Hausdorff) regular if it is Hausdorff and for every x ∈X and a closed
set x ∉ C ⊆X there exist open sets U,V such that x ∈ U,C ⊆ V .

T31/2 or Tychonoff or completely regular if it is Hausdorff and for every
x ∈ X and a closed set x ∉ C ⊆ X there exists a continuous function
f ∶X → [0,1] such that f(x) = 1 and f(C) = 0.

T4 or (Hausdorff) normal if it is Hausdorff and for every disjoint C,D ⊆ X
there exists disjoint open sets U,V such that C ⊆ U,D ⊆ V .

Remark 2.2. Note that Ti Ô⇒ Tj for all j ≥ i.

The additional structure of being a topological groups enables us to go up
the separation scale.

Proposition 2.3. A T0 topological group G is T31/2.

Proof. Let G be a T0 topological group. First let us show that G is T1. For all
x, y ∈ G the homeomorphism Ly ○ ⋅−1 ○Lx−1 exchanges x, y. Hence, T0 Ô⇒ T1.

To prove that G is Hausdorff, it suffices to prove that one can separate 1
from any 1 ≠ g ∈ G by disjoint open sets. By T1, U ∶= G−{g} is an open identity
neighborhood. By continuity of ⋅ ∶ G × G → G, there exists an open identity
neighborhood 1 ∈ V such that V 2 ⊆ U . By replacing V with V ∩ V −1 we may
further assume that V = V −1. Note that 1 ∈ V, g ∈ gV are open neighborhoods
and V ∩ gV = ∅ as otherwise h = gh′ for h,h′ ∈ V Ô⇒ g = h(h′)−1 ∈ V 2 ⊆ U
contradicting the assumption on U .

The same proof can be used to show that T3. Setting U = G − C, finding
1 ∈ V such that V 2 ⊆ U and V = V −1, and taking the open neighborhoods 1 ∈ V
and C ⊆ CV .

To show that G is T31/2, following the proof of Urysohn’s Lemma it suffices
to find identity neighborhoods {Uq}q∈Q∩[0,1], such that for all q < q′ ∈ Q ∩ [0,1],
we have Uq ⊆ Uq′ ⊆ G −C. (Then define f ∶ G→ [0,1] by

f(g) = inf({1} ∪ {q ∶ g ∈ Uq})
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and show that it is continuous by following the proof of Urysohn’s Lemma.)
We do so by induction on an enumeration of Q ∩ [0,1] = {1,0, 1/2, . . .}, making
sure at each step, for all q < q′ previously constructed UqV ⊆ U ′

q for some open
symmetric identity neighborhood 1 ∈ V ⊆ G. Start by setting U1 = G − C. Let
V be a symmetric open identity neighborhood such that V 2 ⊆ U1. Set U0 = V .
For the induction step, let q be the next number in the enumeration, let q′ and
q′′ be the maximal (resp. minimal) previously defined, such that q′ < q (resp.
q < q′′). Let Uq′V ⊆ Uq′′ for some open identity neighborhood V , and let W
be an open identity neighborhood such that W = W −1 and W 2 ⊆ V . Define
Uq = Uq′W . Clearly, UqW ⊆ U ′′

q .

Remark 2.4. We cannot do better than T31/2. For example the uncountable

product RR (i.e, the space of functions R → R with pointwise convergence) is a
T0 topological group which is not normal.

Later in this section we will prove that locally compact Hausdorff groups
which are first countable are metrizable. In fact, they can be endowed with a
left-invariant metric.

2.2 Uniform structure

In the proof of Proposition 2.3 we have used something weaker than the fact
that G is a topological group.

Definition 2.5. A uniform space is a space X, together with collection Φ of
subsets U ⊆X ×X such that:

• U ∈ Φ Ô⇒ ∆X ⊆ U

• U ∈ Φ, U ⊆ V ⊆X ×X Ô⇒ V ∈ Phi

• U,V ∈ Φ Ô⇒ U ∩ V ∈ Φ

• U ∈ Φ Ô⇒ ∃V ∈ Φ ∶ V ○ V ⊆ U (where A ○ B = {(x, z) ∶ ∃y ∶ (x, y) ∈
A, (y, z) ∈ B} for relations A ⊆X × Y and B ⊆ Y ×Z).

• U ∈ Φ Ô⇒ U−1 ∈ Φ (where A−1 = {(y, x) ∶ (x, y) ∈ A} ⊆ Y × X for a
relation A ⊆X × Y )

The uniform structure (X,Φ) defines a topology (X,τ) by:

V ∈ τ ⇐⇒ ∀x ∈ V,∃U ∈ Φ ∶ U[x] ⊆ V

where U[x] ∶= {y ∶ (x, y) ∈ U}.

A topological group G has two uniform space structures. The left (resp.
right) uniform structure is U ∈ Φ if it contains {(x, y)∣x−1y ∈ V } (resp. {(x, y)∣xy−1 ∈
V }) for some open identity neighborhood V .

Remark 2.6. Note that metric spaces and compact topological spaces have
natural uniform structures.
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Exercise 2.7. 1. Define uniform continuity for a function between uniform
spaces.

2. Show that a function f ∶ X → Y with compact support is uniformly con-
tinuous.

3. Show that the left (resp. right) multiplication Lg is uniformly continuous
with respect to the left (resp. right) uniform structure.

2.3 Hausdorffization

Proposition 2.8. For every topological group G, the subset {1} is a normal
closed subgroup with trivial topology, and G/{1} is Hausdorff.

Proof. First, note that g{1} = {g} = {1} for all g ∈ {1}, (for the first equality
note that the homeomorphism Lg maps 1↦ g; for the second equality note that

{g} ⊆ {1} by definition and ⊇ follows from the homeomorphism exchanging 1, g).

Moreover, {1} = {1}
−1

since ⋅−1 is a homeomorphism. This shows that {1} is
a subgroup. Since conjugations are homeomorphisms fixing 1, it follows that
{1} is normal. Finally, G/{1} is T1 since {1} is clearly closed, and hence it is
Hausdorff.

Observation 2.9. The topology of G is the pullback of the topology of G/{1}.

2.4 σ-compactness

Definition 2.10. A topological space is σ-compact if it can be exhausted by a
sequence of compact sets.

Proposition 2.11. Every locally compact topological group has an open sub-
group which is σ-compact.

Proof. Let V be an compact symmetric identity neighborhood, then ⟨V ⟩ = ⋃V n
is a σ-compact open subgroup.

2.5 Metrizability

Definition 2.12. A topological space is first countable if every point has a
countable local basis. That is, for all x ∈ X there is a countable collection of
neighborhoods of x, Ux = {U1, U2 . . .}, such that for every neighborhood x ∈ V
there exists i ∈ N such that x ∈ Ui ⊆ V .

Remark 2.13. 1. Note that metric spaces are first countable.

2. Note that for a topological group, it suffices to find such countable local
basis for the identity element.

Theorem 2.14 (Birkhoff-Kakutani). A topological group is metrizable if and
only if it is Hasudorff and first countable. In fact, in such a case it has a
left-invariant metric (that is, d(x, y) = d(gx, gy) for all x, y, g ∈ G).

10



Proof. The “only if” part is clear, we will prove the “if” part. Assume G is
Hausdorff and first countable, then there is a countable local basis of open
neighborhoods at 1, U1 = {Un}n∈N. By T31/2, there are functions fn ∶ G → [0,1]
such that fn(1) = 1 and fn(G − Un) = 0. In fact, a closer look at the proof,
shows that we can choose fn to be uniformly continuous. Consider the function
f = ∑n 2−nfn. From the construction, f is uniformly continuous, f(1) = 1, and
(from the Hausdorff assumption)f(g) ≠ 1 for all 1 ≠ g ∈ G.

Consdier the metric df ∶ G ×G→ R given by

df(g, h) = sup
x∈G

∣f(g−1x) − f(h−1x)∣ = sup
x∈G

∣f(g−1hx) − f(x)∣.

It satisfies the triangle inequality because it is the pull back of the sup norm.
df(g, h) = 0 ⇐⇒ g = h since f(x) = 1 ⇐⇒ x = 1, and it is continuous because
f is uniformly continuous. In other words, the group topology is finer than the
metric topology.

By construction d(1, g) < 2−n Ô⇒ f(g) > 1 − 2−n Ô⇒ g ∈ Un we get that
the group topology is finer than the metric topology.

It is also apparent that the metric df is left-invariant.

Lemma 2.15. Let G be a locally compact topological group. Then there is an
open subgroup G′ of G such that, for every identity neighborhood U in G, there
exists a compact N �G′ contained in U , such that G′/N is first countable.

Proof. Without loss of generality, we may assume that U is compact. We con-
struct by induction a sequence Un of identity neighborhoods such that U0 = U ,
and U2

n+1 ⊆ Un and UUn+1 ⊆ Un (where AB = {ab ∶ a ∈ A, b ∈ B} and ab = b−1ab).
We have seen how to get V such that V 2 ⊆ U . Using the continuity of the map
G × G → G given by (a, b) ↦ ab, we see that the set O = {(a, b) ∶ ab ∈ Un} is
open, and contains {1} ×U , by compactness of U there exists an open identity
neighborhood set V ′ such that V ×U ⊂ O. Set Un+1 = V ∩ V ′.

Set N = ⋂nUn and G′ = ⟨U⟩.
Exercise 2.16. Show that N �G′ and G′/N is first countable.

This completes the proof

To sum it up, in the following sections we will often assume that our groups
are locally compact. Therefore, by passing to an open subgroup and taking an
arbitrarily small quotient (such as in the statement of Gleason-Yamabe), we
may assume that the group if σ-compact, locally compact and metrizable.
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3 Connected and Totally Disconnected Groups

3.1 The identity component

Definition 3.1. A topological space is totally disconnected if the connected
components are singletons.

Proposition 3.2. Let G be a topological group. Let us denote by G0 the identity
connected component. G0 is a closed connected normal subgroup and G/G0 is a
totally disconnected topological group.

Proof. G0 is a normal subgroup: Note that 1 ∈ gG0 ∪ G0 is connected for all
g ∈ G0, and therefore gG0 ⊆ G0, so G0G0 ⊆ G0. The inverse map is a homeo-
morphism and therefore G−1

0 = G0. Similarly, it is normal, since the conjugation
maps are homeomorphisms.

The group G/G0 is totally disconnected: Let A be a connected subset of
G/G0 containing 1. Let B = π−1(A) be its preimage. Then if U,V are open
sets such that 1 ∈ B ∩ U,B ∩ V are disjoint. Then, for every b ∈ B bG0 ⊆ B
and either bG0 ⊆ U or V . This means that π(U), π(V ) are open2 in G/G0, and
π(U) ∩A,π(V ) ∩A are disjoint. Since A is connected π(U) ⊇ A and therefore
U ⊇ B. This shows that B is connected, but then B ⊆ G0, which implies that
A = {1}. That is, all connected sets are singletons.

This proposition shows that every topological group is “connected – by –
totally-disconnected”.

Observation 3.3. Every open subgroup is also closed. In particular, connected
groups do not have proper open subgroups.

3.2 The van Dantzig Theorem

In view of the Gleason-Yamabe Theorem (Theorem 1.21), connected groups are
inverse limits of Lie groups. Thus, it makes sense to focus for now on totally
disconnected locally compact groups (these groups are often abbreviated as tdlc
groups).

Theorem 3.4 (van Dantzig’s Theorem). Every totally disconnected locally com-
pact Hausdorff group has a local basis of compact open subgroups.

Example 3.5. The group Qp of p-adic rationals, is totally disconnected. It has
a local basis of groups given by the compact open subgroups {pnZp}n∈N.

We will see more examples later.

To prove the theorem we will need the following lemma

Lemma 3.6. Let X be a totally disconnected compact Hausdorff space, and let
x, y ∈ X be disjoint points. Then there exists a clopen subset containing x but
not y.

2note that for topological groups quotient maps are always open
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Proof. Let K be the intersection of all clopen neighbrohoods of x. We want to
show that K = {x}, for that it suffices to show that K is connected.

Assume that O is clopen in K containing x. Let O′ = K − O. Both O,O′

are closed in K, and K is closed in X, and hence O,O′ are closed in X. X is
normal (because it is compact and Hausdorff), therefore there are open disjoint
sets U,U ′ containing O,O′ respectively. There exists a clopen neighborhood C
of x that is contained in U ∪U ′ (otherwise by the finite intersection property K
will contain a point outside U ∪ U ′). C ∩ U is clopen in C (as its complement
is C ∩U ′), and thus clopen neighborhood of x in X. It follows that K ⊆ U and
K = O, as desired.

Proof of Theorem 3.4. Let U be a compact identity neighborhood. Applying
the lemma to 1 and y ∈ ∂U we can find an identity neighborhood Vy which is
clopen in U and does not contain y. By compactness of ∂U , we can find an
identity neighborhood V which is clopen in U and does not intersect ∂U . It
follows that V is clopen in G.

By continuity of multiplication and compactness of V , there exists a sym-
metric open identity neighborhood W in V such that WV ⊆ V . It follows that
⟨W ⟩ ⊆ V ⊆ U is an open (hence clopen) subgroup contained in U .

As a corollary we get a special case of the Gleason-Yamabe Theorem for
totally disconnected groups.

Corollary 3.7. Let G be a totally disconnected locally compact Hausdorff group,
then G has an open subgroup that is the inverse limit of discrete groups.

Proof. By the van Dantzig Theorem, let G′ be an open compact subgroup of
G. Let U be some identity neighborhood of G′. By the van Dantzig Theorem,
there exists an open subgroup H ≤ G′ in U . Since G′ is compact, H has finite
index in G′. It follows that N = ⋂g∈G′Hg is open (as a finite intersection of open
groups) and normal. Hence G′/N is discrete. The map G′ → lim←Ð

G/N ⊆ ∏N
G′/N

shows that G′ is an inverse limit of discrete groups.

3.3 Profinite groups

Definition 3.8. A profinite group is a compact, Hausdorff, totally disconnected
group. Equivalently, it is the inverse limit of finite groups.

Example 3.9. • The profinite completion of a group. Recall that for a
(residually finite) group G, the profinite completion of G is the inverse
limit of G/N for all finite index normal subgroups N �G.

• Zp,SL(n,Zp).

• For a Galois field extension K/k of fields of characteristic 0. That is, K/k
is algebraic (every element in K is a root of a polynomial over k), and for
each irreducible polynomial f over k the number of roots is 0 or deg(f).
The Galois group Gal(K/k) is the group of all field automorphisms of K

13



that are identity on k. For every intermediate field K > L > k, we may
consider Gal(K/L) ≤ Gal(K/k).
We can consider on Gal(K/k) the Krull topology which is generated by
the identity neighborhoods Gal(K/L) where L ranges over all finite Galois
extensions of k.

In fact, every profinite group can be made isomorphic to a Galois group.

An important recent theorem about profinite groups is the following:

Theorem 3.10 (Nikolov–Segal 2007). If G is a topologically finitely generated
profinite group then H ≤ G is open if and only if H has finite index.

The proof of this theorem uses the CFSG.

Corollary 3.11. If G,H are profinite, and G is topologically finitely generated.
Every surjective group homomorphism G→H is continuous.

Proof. Indeed, every open subgroup of H is of finite index, and hence its preim-
age is open in G by the Nikolov-Segal Theorem.

Remark 3.12. It is easy to see that a closed subgroup of finite index is open.

3.4 Locally finite graphs and the Cayley-Abels graph

3.4.1 Groups of automorphisms of graphs

Lemma 3.13. Let Γ be a locally finite connected graph. Then Aut(Γ) the group
of automorphisms of Γ, with the pointwise convergence topology (or equivalently
the compact open topology) is a tdlc group.

Proof. Clearly Aut(Γ) is totally disconnected, since it is a subspace of the totally
disconnected space V (Γ)V (Γ). To prove that it is locally compact, consider the
open identity neighborhood 1 ∈ StabG(v0) for some vertex v0 ∈ V (Γ). Let us
denote by Bn the (vertices in the) ball of radius n around v0 in Γ. Then U clearly
preserves Bn, and so in fact U ≤ ∏BBn

n which is compact by Tychonoff.

The van Danzig Theorem takes a simply form in this case: G = Aut(Γ) has
a local basis of open compact subgroups given by {FixG(F )} where F ranges
over finite subsets of Λ and FixG(F ) is the pointwise stabilizer of F in G.

Example 3.14. If Γ is the d-regular rooted tree. I.e. it is the tree that has one
vertex of degree d called the root, and all other vertices of degree d + 1. Then
Aut(Γ) is a profinite group. Its finite quotients can be seen as the automorphism
groups of the balls around the root. That is, it is the inverse limit of the
wreath products (. . . (Sd ≀[d] Sd) ≀[d] . . .) ≀[d] Sd where Sd is the symmetric group
on [d] = {1, . . . , d}, and G ≀X H is the wreath product of G and H ↷ X, i.e
(⊕x∈X G)⋊H where H acts on ⊕h∈H G by permuting its coordinates according
to the action H ↷X.

14



3.4.2 The Cayley-Abels graph

Let G be a compactly generated, locally compact, totally disconnected group.
Let U be a compact open subgroup, and let S be a compact generating set,
satisfying S = USU .

Definition 3.15. The Cayley-Abels graph is the graph Γ = Cay(G,S,U) whose
vertex set V (Γ) = G/U and edges are (gU, gsU) for all s ∈ S and g ∈ G.

Note that Γ has finite valency d ∶= ∣USU ∶ U ∣, and that G acts on Γ ver-
tex transitively. The action of G might not be faithful. This happens when
CoreG(U) = ⋂Ug ≠ 1.

The action G→ Aut(Γ) is continuous, since Stab(gU) = gUg−1 are open.
Finally, one can get new groups acting on a finite valence tree from this

construction by noting that Td the d-regular tree covers Γ = Cay(G,U,S) by the
covering map p ∶ Td → Γ. We can consider G̃ to be the group of automorphisms
of Td that cover elements of g, that is, all elements g̃ ∈ Aut(Td) such that
there exists g ∈ G such that p ○ g̃ = g ○ p. In particular, π1(Γ) ≤ G̃ as Deck
transformations. G̃ fits into the following short exact sequence:

1→ π1(Γ) → G̃→ G→ 1.

Moreover, G̃ is closed in Aut(Td).

15



4 The Haar Measure

4.1 Radon measures and the Haar measure

The (left) Haar measure is a (nice) measure on a topological group G that
is invariant under (left) multiplication. One instance of this measure is the
Lebesgue measure on Rn.

Definition 4.1 (Haar measure). A Radon measure Let X be a σ-compact lo-
cally compact Hausdorff topological space. A Radon measure is a Borel measure
(σ-additive positive measure on the Borel σ-algebra B(X) of X) such that:

1. µ(K) < ∞ for all compact K ⊆X

2. µ(E) = sup{µ(K) ∣K ⊆ E compact} for all E ∈ B(X)

3. µ(E) = inf{µ(U) ∣ U ⊇ E open} for all E ∈ B(X)

A left (resp. right) Haar measure on a σ-compact locally compact Hausdorff
topological group is a non-zero Radon measure which is invariant under left
(resp. right) multiplication. That is, µ(E) = µ(gE) for all E ∈ B(G), or
equivalently, ∫ f(gx)dµ = ∫ f(x)dµ

Example 4.2. • The Lebesgue measure on (Rn,+).

• The counting measure on a discrete group.

• The Haar measure on Zp can be discribed in the following way. Every
number in Zp can be written uniquely as ∑n anpn for 0 ≤ an < p. This
gives a (continuous) map ∏n{0, . . . , p−1} → Zp. The Haar measure on Zp
is the push-forward of the product measure.

Exercise 4.3. Prove the claims in the previous example.

Exercise 4.4. Show that if U is open and non-empty in G and µ is a left Haar
measure on G, then µ(U) > 0.

Theorem 4.5. Every locally compact (σ-compact, Hausdorff) topological group
admits a unique Haar measure up to a scalar multiplication.

4.2 Existence of the Haar measure.

To prove this theorem we recall the Riesz Representation Theorem which basi-
cally states that integration identifies Radon measures and positive functionals
on compactly supported continuous functions.

Definition 4.6. Let Cc(X) be the space of complex valued continuous func-
tions with compact support on X. A positive functional on Cc(X) is a linear
functional I ∶ Cc(X) → R such that I(f) ≥ 0 for all f ≥ 0 in Cc(X).
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Theorem 4.7 (Riesz Representation Theorem). The map that maps µ ↦ Iµ,
where Iµ(f) = ∫ f(x)dµ(x), is a bijection between Radon measures on X and
positive linear functionals.

We will not prove this theorem in this course, the proof of this theorem can
be found in any measure theory textbook.

Proof of Existence of Haar measure in Theorem 4.5. Let us restate the existence
of the Haar measure in Theorem 4.5 in view of Theorem 4.7. We want to show
that there exists a non-trivial positive bounded functional satisfying I(f) =
I(τ(g)f) where τ is the left translation action of G on Cc(G) τ(g)f(x) =
f(g−1x) for all x, g ∈ G, and f ∈ Cc(G).

In fact it suffices to consider the space Cc(G)+ of non-negative functions in
Cc(G), and to consider functions I ∶ Cc(G)+ → [0,∞) which are additive, homo-
geneous (with respect to positive scalars), and invariant under left translations.

To prove the existence of such a functional we will use a compactness argu-
ment. For the sake of the argument let us fix some non-zero compactly supported
function f0 ∶ G → [0,∞), this function will serve as our gauge; we will require
I(f0) = 1. For all ε > 0 and functions f1, . . . , fn ∈ Cc(G)+ we will find a function
I = Iε,f0,...,fn ∶ Cc(G)+ → [0,∞) satisfying:

1. (normalization) I(f0) = 1

2. (homogeneity) I(λf) = λf for all λ > 0, f ∈ Cc(G)+,

3. (approximate-additivity) ∣I(fi + fj) − I(fi) − I(fj)∣ ≤ ε for all 0 ≤ i, j ≤ n,

4. (invariance) I(τ(g)f) = I(f) for all g ∈ G,f ∈ Cc(G)+,

5. (uniform bound) and I(f) ≤M(f) for all f ∈ Cc(G)+, whereM ∶ Cc(G)+ →
[0,∞) is independent of ε, f1, . . . , fn.

Assuming we have constructed such functions, let us show how to use them to
construct the desired functional. Given ε, f0, . . . , fn, let us denote by Iε,f0,...,fn
the set of all such functionals. These sets are closed subsets of∏f∈Cc(G)+[0,M(f)]
which is compact by the Tychonoff Theorem. The existence of Iε,f0,...,fn shows
that these sets satisfy the finite intersection property. Therefore, by compact-
ness there exists a function I ∈ ⋂Iε,f0,...,fn , which must be a left invariant
positive functional, as desired.

To prove the existence of the function I = Iε,f0,...,fn , let δ > 0 be a small
number to be determined later. By uniform continuity of f1, . . . , fn, let U be
an identity neighborhood such that ∣fi(x′) − fi(x)∣ ≤ δ for all x ∈ G,x′ ∈ xU and
for all 1 ≤ i ≤ n. Finally, let ψ ∶ G → [0,1] be a non-zero continuous function
supported on U .

Define

[f ∶ ψ] ∶= inf {
m

∑
k=1

ck ∣ ∀c1, . . . , cm > 0, g1, . . . , gm ∈ G such that f ≤
m

∑
k=1

ckτ(gk)ψ} ,
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and

I(f) = [f ∶ ψ]
[f0 ∶ ψ]

.

Clearly I is normalized, homogeneous and left-invariant. It is also easy to see
that [f ∶ ψ] ≤ [f ∶ f0][f0 ∶ ψ], from which the uniform bound follows by setting
I(f) ≤ [f ∶ f0] =∶M(f). It thus remains to show the approximate-additivity.

It is clear that I(fi + fj) ≤ I(fi) + I(fj). Therefore we have to show that
I(fi) + I(fj) ≤ I(fi + fj) + ε. Let ck > 0, gk ∈ G (k = 1, . . . ,m) such that

fi + fj ≤ ∑ ckτ(gk)ψ. Set c′k =
fi(gk)+δ

fi(gk)+fj(gk)+2δ
ck and c′′k = fj(gk)+δ

fi(gk)+fj(gk)+2δ
ck, so

that we have ck = c′k + c′′k . Then, we claim that by choosing U small enough we
have

fi ≤ ∑ c′kτ(gk)ψ + 4δ

and
fj ≤ ∑ c′′kτ(gk)ψ + 4δ.

Evaluating the summands on the right hand side on some x ∈ G we get

c′kτ(gk)ψ(x) =
fi(gk) + δ

fi(gk) + fj(gk) + 2δ
ckψ(g−1

k x)

≥ fi(x)
fi(x) + fj(x) + 4δ

ckψ(g−1
k x)

where the second inequality follows since ψ supported on U , and thus it is
non-zero only if x ∈ gkU , and hence ∣fi(x) − fi(gk)∣ ≤ δ and ∣fj(x) − fj(gk)∣ ≤ δ.

Hence,

∑ c′kτ(gk)ψ(x) + 4δ ≥ fi(x)
fi(x) + fj(x) + 4δ

∑ ckτ(gk)ψ(x) + 4δ

≥ fi(x)
fi(x) + fj(x) + 4δ

(fi(x) + fj(x)) + 4δ

≥ fi(x).

Now, let φ ∈ Cc(X) be some function such that φ = 1 on the support of fi
and fj , then fi ≤ ∑ c′kτ(gk)ψ+4δφ and fj ≤ ∑ c′′kτ(gk)ψ+4δφ. By monotonicity
of I,

I(fi) + I(fj) ≤
1

[f0 ∶ ψ]
∑(c′k + c′′k) + 8δI(φ) ≤ ∑ ck

[f0 ∶ ψ]
+ 8δM(φ).

By taking δ small enough, and taking an infimum over all such ck, we get the
desired bound.

4.3 Uniqueness of the Haar measure

To prove the uniqueness we will use the Radon-Nikodym derivative.
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Definition 4.8. The measure µ is absolutely continuous with respect to ν,
denoted µ≪ ν if for all measurable E, ν(E) = 0 Ô⇒ µ(E) = 0.

Theorem 4.9 (Radon-Nikodym Derivative). If µ ≪ ν are σ-finite then there
exists f measurable such that dµ = fdν. This f is denoted as dµ

dν
and is well-

defined up to ν-null sets.

Proof of Uniqueness of Haar measure (Theorem 4.5). Let µ, ν be two Haar mea-
sures. Then, µ+ν is also a left Haar measure, and µ≪ µ+ν. Therefore, for our
proof we may assume without loss of generality that µ≪ ν.

By the Radon-Nikodym there exists a measurable h ∶ G → (0,∞) such that
dµ = h ⋅ dν. Then, for all f ∈ Cc(G) and all z ∈ G

∫ f(x)h(x)dν(x) = ∫ f(x)dµ(x)

= ∫ f(zx)dµ(x)

= ∫ f(zx)h(x)dν(x)

= ∫ f(x)h(z−1x)dν(x)

where at two equalities we use the invariance of µ and ν. Hence, ∫ f(x)(h(x)−
h(z−1x))dν(x) for all f ∈ Cc(G). It follows that for all z ∈ G h(x) −h(z−1x) = 0
for ν-a.e. x.

By Fubini, for ν-a.e. x

0 = ∫ ∣h(x) − h(z−1x)∣dµ(z) = ∫ ∣h(x) − h(z−1)∣dµ(z)

. We conclude that h ≡ c is ν-a.e., for some c > 0, and µ = cν as desired.

4.4 The modular function

Note that if µ is a left Haar measure on G, and g ∈ G, then (Rg) ∗ µ (right
translation of µ by g) is again a left Haar measure on G, therefore it is a scalar
multiple of µ. The function ∆ ∶ G → (0,∞) such that (Rg)∗µ = ∆(g)µ is called
the modular function. The modular function measures how much a left Haar
measure is also a right Haar measure. We say that a group is unimodular if its
left Haar measure is also a right Haar measure.

Exercise 4.10. Prove that the modular function is a continuous homomor-
phism, independent of µ. Deduce that if G is compact or perfect (i.e G is equal
to its commutator subgroup) then it is unimodular.

Show that the push-forward of a left Haar measure under the inverse map
is a right Haar measure, and show that it is equal to ∆(g)±dµ(g) for the right
assignment of the sign ±.

Exercise 4.11. Find a left Haar measure for G = (∗ ∗
0 1

) ≤ GL(2,R) and show

that it is not unimodular.
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5 Compact Groups

In this section let G be a compact topological group, and let µ be its (bi-
invariant) Haar probability measure on G. Our goal will be to find many finite
dimensional representations of G, in the sense of the following theorem. As a
corollary we will deduce the Gleason-Yamabe Theorem for compact groups.

Theorem 5.1 (Baby Peter-Weyl Theorem). Let G be a compact Hausdorff
group, and let 1 ≠ g ∈ G, then there exists a finite dimensional representation
G→ GL(V ) in which g acts non-trivially.

5.1 The left regular representation and convolution

Denote by L2(G) = L2(G,µ) the space of square-integrable functions f ∶ G→ C
(up to µ-everywhere equivalence). This space is a Hilbert space with the inner
product

⟨f, g⟩ = ∫
G
f(x)g(x) dµ(x).

On this space there is an action by G given by τ(y)f(x) = f(y−1x) for all
y ∈ G,f ∈ L2(G). The operators τ(y) are unitary, as it is easy to verify τ(y)−1 =
τ(y−1) = τ(y)∗. This action is the regular representation of G.

The strategy for finding finite dimensional representations of G is to find
finite dimensional subspaces of L2(G) which are invariant under the regular
action. To do so, we will find an operator that commutes with the left regular
representation and study its eigenspaces. These operators are coming from the
convolution on L2(G).

The convolution of f, g ∈ L2(G) is defined by

f ∗ g(x) = ∫
G
f(y)g(y−1x)dµ(y)

Claim 5.2. The convolution of functions in L2(G) is well-defined, continuous
and in L2(G).

Proof. It is well-defined since f ∗ g can also be written as the inner product of
f and g̃x(y) = g(y−1x), which is again in L2(G) as the Haar measure is right
invariant. The map x↦ g̃x is continuous, hence f ∗ g(x) = ⟨f, g̃x⟩ is continuous.
Since G is compact, f ∗ g is automatically in L2(G).

Remark 5.3. We are using the fact that G is compact in the previous claim.
There are functions f, g ∈ L2(R) whose convolution is not in L2(R).

Given g ∈ L2(G), denote by Tg ∶ L2(G) → L2(G) the operator given by
f ↦ f ∗ g.

Claim 5.4. The operator Tg satisfies:

1. (commutation) Tg commutes with the regular representation.
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2. (self-adjoint) Tg is self-adjoint if g(x−1) = g(x) for all x ∈ G.

3. (compact) Tg is a compact operator (i.e, it maps bounded sets to precom-
pact sets).

Proof. We have,

τ(y)Tg(f)(x) = ∫ f(z)g(z−1(y−1x))dµ(z)

[z′ ∶= yz] = ∫ f(y−1z′)g((y−1z′)−1y−1x)dµ(z′)

= ∫ f(y−1z′)g((z′)−1x)dµ(z′)

= Tgτ(y)f(x).

This shows that Tg commutes with the regular representation. In fact, one has
τ(y)(f ∗ g) = (τ(y)f) ∗ g = f ∗ (τ(y)g) for all y ∈ G.

If g(x−1) = g(x) for all x ∈ G, then

⟨f ∗ g, h⟩ = ∫ (f ∗ g)(x)h(x)dµ(x)

=
x

f(y)g(y−1x)h(x)dµ(y)dµ(x)

[g(z−1) = g(z)] =
x

f(y)g(x−1y)h(x)dµ(y)dµ(x)

= ⟨f, h ∗ g⟩ .

This shows that under this assumption on g, Tg is self-adjoint.
Compactness will follow from the following exercise by taking K(x, y) ∶=

g(x−1y). Note that since G is compact (and µ(G) = 1),

∥K∥2
L2(G2) =

x
∣g(x−1y)∣2dµ(x)dµ(y) (5.1)

=
x

∣g(y)∣2dµ(x)dµ(y) (5.2)

= ∫ ∥g∥2
2dµ(x) = ∥g∥2

L2(G) (5.3)

Exercise 5.5. Let K ∈ L2(X ×Y,µ×ν), and let T ∶ L2(X,µ) → L2(Y, ν) be the
operator defined by

T (f)(y) = ∫
X
K(x, y)f(x)dµ(x).

Then T is compact. [Hint: 1. Approximate K by combinations of function
a(x)b(y) where a(x) ∈ L2(X), b(y) ∈ L2(Y ). 2. Show that T is a (norm) limit
of finite rank bounded operators. 3. Show that such a limit must be compact.]
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5.2 Spectral Theory and the Peter-Weyl Theorem

For compact self adjoint we have the following.

Theorem 5.6 (the spectral theorem of compact self-adjoint operators). Let
T ∶ H → H be a compact self-adjoint operator on a Hilbert space H. Then
there exists a countable sequence λn ↘ 0 of non-zero eigenvalues, such that H =
V0 ⊕⊕n Vλn where Vλn are finite dimensional λn-eigenspaces, and V0 = ker(T ).

Now we are ready to prove Theorem 5.1. In fact, we will prove the stronger
theorem.

Theorem 5.7 (Baby Peter-Weyl Theorem). Let G be a compact Hasudorff
group, and let 1 ≠ x ∈ G, then there exists a τ(G)-invariant subspace on which
x acts non-trivially.

Proof. Assume for contradiction that τ(x) = id on every τ(G)-invariant sub-
space. In particular, by the claim and the spectral theorem, for every g ∈ L2(G),
τ(x) = id on the image of Tg.

Let us build a function g for which it fails. Let U be a compact identity
neighborhood such that x ∉ U2. Let g = χU be supported in U , then Tg(g) =
g ∗ g is support on U2. A computation shows that g ∗ g(1) = µ(U) > 0 while
g ∗ g(x) = 0, and so τ(x)(g ∗ g) ≠ g ∗ g.

Corollary 5.8 (Gleason-Yamabe for compact groups). Let G be a compact
group, then for all identity neighborhood U there exists a normal N�G contained
in U such that G/N is a compact linear group.

Fact 5.9. Closed subgroups of GL(n,R) are Lie.

Proof of Corollary 5.8. Assume without loss of generality that U is open. By
Theorem 5.7, for every x ∉ U there exists a (continuous) finite dimensional
representation ρx ∶ G → GL(V ) such that ρx(x) ≠ id. By continuity, ρx ≠ id on
a neighborhood of x. By compactness of G − U , there are finitely many finite-
dimensional representation {ρi ∶ G → GL(Vi)}ni=1 such that every x ∈ G − U is
non-trivial in at least one of them. Therefore, ρ = ⊕n

i=1 ρi ∶ G → ⊕iGL(Vi) ≤
GL(⊕n

i=1 Vi) is a representation such that ker(ρ) ≤ U , and whose image is a
compact subgroup of GL(⊕n

i=1 Vi), as desired.

We end this subsection with the statement of the full Peter-Weyl Theorem.
For this, recall that a representation G → GL(V ) is irreducible if it has no
non-trivial invariant subspaces.

Theorem 5.10 (Peter-Weyl Theorem). Let G be a compact Hausdorff group.
Then L2(G) ≃ ⊕V dim(V ) as representations, where the sum runs over all fi-
nite dimensional irreducible representations V of G up to isomorphism. More
accurately, τ ≃ ⊕ρ⊕dim(ρ).
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The example one should have in mind is G = R/Z. By Fourier series we know
that {fn(t) = e2πikt}k∈Z is an orthonormal basis for L2(G), i.e

L2(G) = ⊕
k∈Z

Rfk.

Indeed, all irreducible representations of R/Z are 1-dimensional (since it is
abelian), and are given by the homomorphisms fk ∶ G→ C× = GL1(C).

Exercise 5.11 (Peter-Weyl for compact abelian groups, a.k.a Fourier analysis
on compact abelian groups). Let G be a compact abelian group. Denote by
Ĝ = Hom(G,S1) the space of continuous homomorphisms χ ∶ G → S1 ⊂ C with
the uniform convergence topology (i.e sup topology). Show that:

1. C(G) = SpanC(Ĝ) in the uniform convergence topology. (Hint: Stone-
Weierstrass)

2. L2(G) = ⊕χ∈ĜCχ, i.e Ĝ forms an orthonormal basis for L2(G). (Hint:

show that ∫ χ(g)dµ(g) = 0 for all χ /≡ 1)

Ĝ is called the Pontryagin dual of G and elements of Ĝ are called characters of
G.

5.3 From compact to non-compact abelian groups

Definition 5.12. A subgroup H < G is cocompact if G/H is compact.

Exercise 5.13. For a locally compact group G, H < G is cocompact if and only
if there exists K ⊆ G cocompact such that G =HK.

Lemma 5.14. Let G be a locally compact group, then G has a subgroup which
has a cocompact finitely generated subgroup.

Proof. Let K be a symmetric compact 1 neighborhood. By compactness, there
exists a finite set F ⊂ G, such that K2 ⊆KF . Without loss of generality, we can
assume that F ⊂K−1K2 =K3. If we denote by G′ the open subgroup generated
by K and by H the subgroup of G′ generated by F , then

KnH =KH.

Therefore G′ ≤KH. We deduce that G′ =KH, as desired.

In the abelian case we can improve the situation.

Definition 5.15. A cocompact lattice is a discrete cocompact subgroup.

Proposition 5.16. Let G be a locally compact abelian group with a cocompact
finitely generated subgroup, then G has a finitely generated lattice.

For this we will need the following lemma.
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Lemma 5.17. Let G be a locally compact group, and let g ∈ G. Then, ⟨g⟩ is
discrete or precompact.

Proof. By replacing G with ⟨g⟩ if necessary, we may assume that ⟨g⟩ is dense
in G. Assume that it is not discrete, then there is a sequence 1 ≠ gnk → 1. We
may assume that nk →∞ (by changing gn to g−n if needed).

Let U be a compact symmetric 1 neighborhood. Then U3 can be covered by
finitely many translates xiU i = 1, . . . ,m. Since ⟨g⟩ g = G, we may find powers
r1, . . . , rm such that griU2 cover U3. Using the sequence gnk we can cover U3

with gsiU2 where s1, . . . , sm > 0. This means that if gn ∈ U3 then gn−si ∈ U3

for some 1 ≤ i ≤ m. In other words, the set {n ∈ Z∣gn ∈ U3} is left-syndetic
(i.e has bounded gaps as n → −∞). Similarly, it is also right-syndetic, and
hence syndetic (has bounded gaps). This means that there exists M such that
⟨g⟩ ∈ U ∪ gU ∪ . . . ∪ gMU , which implies that it is precompact.

Proof of Proposition 5.16. By induction on the ‘rank’ of G, i.e the minimal
number of generators of a cocompact subgroup. If G has rank 0, then G is
compact, and the trivial subgroup is a cocompact lattice.

Otherwise, G has rank r. I.e, it has a dense subgroup generated by e1, . . . , er ∈
G. By Lemma 5.17, ⟨e1⟩ is discrete or precompact. If it is discrete, then G/ ⟨e1⟩
is an abelian group that has rank ≤ r − 1, and therefore has a finitely generated
cocompact lattice H. Then H ⟨e1⟩ is a cocompact lattice in G. The same works
if any of ⟨ei⟩ is discrete. So, we may assume that all of ⟨e1⟩ , . . . , ⟨er⟩ are pre-
compact, but since G is abelian ⟨e1, . . . , er⟩ = ⟨e1⟩⋯ ⟨er⟩ is precompact. Thus G
is compact (as it has a precompact cocompact subgroup), and again the trivial
group is a cocompact lattice.

Finally, let us deduce Gleason-Yamabe for locally compact abelian groups
from Proposition 5.16, using the following fact.

Fact 5.18. A topological group which is “locally isomorphic to a Lie group” is
a Lie group. (We will prove this later in the course)

Theorem 5.19 (Gleason-Yamabe for abelian groups). Let G be a locally com-
pact abelian group, then for all identity neighborhood U there exists a compact
normal subgroup N such that G/N is isomorphic to a Lie group.

Proof. By the above discussion we can find G′ ≤ G open with a discrete lattice
Γ ≤ G′. By shrinking U we may assume that it is compact, symmetric and
U2 ∩ Γ = 1. Let π ∶ G′ → G′/Γ be the quotient map, note that π is injective on
U . Since G′/Γ is a compact Hausdorff group, we can apply the Gleason-Yamabe
Theorem for compact groups and find a subgroup H ⊂ π(U) such that G′/U is
a Lie group.

Exercise 5.20. N = π−1(U) ∩U is a compact subgroup of G.

Let φ ∶ G′ → G′/N , then (G′/N)/φ(Γ) is isomorphic to (G′/Γ)/H and is
thus a Lie group. This means that G′/N is locally a Lie group. It is an open
subgroup of G/N which is therefore also locally a Lie group. By the fact above,
it is a Lie group.
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6 Local Groups and the Exponential map

6.1 Local groups and Euclidean local groups

Let G be a topological group, and let U be an open identity neighborhood.
Then the group operations define partial operations on U , which still satisfy the
group axioms whenever all involved elements are defined. The obtained object
is a ‘local group’ in the following sense.

Definition 6.1 (Local group). A local group G = (G,Ω,Λ,1, ⋅,−1 ) is a topolog-
ical space G with open sets 1 ∈ Λ and {1} ×G∪G× {1} ⊆ Ω ⊆ G×G, a partially
defined multiplication ⋅ ∶ Ω → G and a partially defined inverse ()−1 ∶ Λ → G
which satisfies associativity, identity and inverse, whenever all the involved op-
erations are defined (e.g, (x ⋅ y) ⋅ z = x ⋅ (y ⋅ z) whenever both expressions are
well-defined).

Remark 6.2. 1. Groups are local groups.

2. Open identity neighborhoods of local groups (with the restricted opera-
tions) are local groups.

3. A local morphism of local groups G,H is a map φ ∶ U → H from an
identity neighborhood of G to H that respects the local group operations.
We will say that two local groups are locally isomorphic if they have a
local morphism with a local inverse.

4. Much of the course could have been done from the perspective of studying
local group. E.g. locally compact local groups have Haar measure etc. In
fact, every locally compact group is locally isomorphic to a locally compact
group.

We will restrict our attention to Euclidean local groups – that is, local groups
whose underlining space is an open subset of Rn and identity element 0 (but an
arbitrary group law). In particular if G is a locally Euclidean group, then it has
an open identity neighborhood U and a homeomorphism φ ∶ U → V to an open
subset V of Rn. Without loss of generality we may assume φ(1) = 0 and define
a partial multiplication ∗ on V by

x ∗ y = φ(φ−1(x) ⋅ φ−1(y))

where ⋅ is the multiplication in G. This gives V = (V,Ω,Λ,0,∗,−1 ) a structure
of a Euclidean local group.

Our focus in the next chapters will be on improving the regularity of the
multiplication – i.e. continuity / differentiability / smoothness / analyticity of
the multiplication as a map from an open subset of R2n → Rn). Our starting
point is the notion of C1,1 local groups defined below. And our first goal is to
show that the multiplication in a C1,1 local groups can be made real-analytic,
and in particular smooth, making it a local Lie group (also defined below). This
is the essence of the Baker-Campbell-Hausdorff Formula (Theorem ??).
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Definition 6.3. A C1,1 local group is a Euclidean local group (V,Ω,Λ,0,∗,−1 )
where V ⊂ Rn is open, and if3

x ∗ y = x + y +O(∣x∣∣y∣)

for all sufficiently small x, y ∈ V (the constant in O-notation may depend on V
but is uniform in x, y).

Similarly, a local Lie group is a Euclidean local group in which the group
operation is smooth (i.e C∞).

6.2 The exponential map for matrices

Let G = GL(n,C). We can define exp ∶M(n,C) → GL(n,C) by

exp(A) =
∞

∑
k=0

1

k!
Ak

It is not too hard to show that exp is well-defined, real analytic (in fact,
complex analytic), and satisfies exp((s + t)A) = exp(sA) exp(tA) for all s, t ∈ C
and A ∈ M(n,C). This shows that t ↦ exp(tA) is a continuous group homo-
morphism R→ GL(n,C). Surprisingly, the converse holds true as well.

Proposition 6.4. Let φ ∶ R→ GL(n,C) be a continuous homomorphism. Then,
there exists A ∈M(n,C) such that φ(t) = exp(tA) for all t ∈ R.

Proof. It suffices to show that there exists A such that φ(t) = exp(tA) for small
enough t.

Since exp is real analytic (with derivative = id), it is onto a small enough
neighborhood of I (which by changing the parametrization of φ, we may assume
includes φ(1)). Let A be such that φ(1) = exp(A).

Since both φ, exp are homomorphisms we have

φ(1/2)2 = φ(1) = exp(A) = exp(A/2)2.

But A↦ A2 is a diffeomorphism near 1 in GL(n,R). and so φ(1/2) = exp(A/2).
Repeating this we get φ(1/2n) = exp(A/2n). And by the homomorphism prop-
erty, we get φ(t) = exp(tA) for all dyadic number t ∈ R[1/2]. The dyadic num-
bers are dense in R, and so by continuity of both φ, exp we get φ(t) = exp(tA)
for all t ∈ R.

In particular, it shows how every continuous homomorphism in GL(n,C)
can be promoted to a real-analytic homomorphism.

3

Notation. Use O(f(x)) to denote some function which in norm/absolute value is ≤K ⋅ f(x)
for some K ∈ R.
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6.3 Estimates for C1,1 local groups

Let G be a C1,1 local group. Our first goal is to make G into a radially homoge-
neous C1,1 local group, where radially homogeneous stands for sx∗ tx = (s+ t)x
for all x ∈ Rn and s, t ∈ R such that sx, tx are sufficiently small. For this we will
define a map exp(x) that will ‘straighten’ our local group, and make it radially
homogeneous.

We have seen how to define the map exp (on matrices) using a power series,
but it will be more convenient for us to use the following limit

exp(x) = lim
n→∞

(1 + x
n
)n

or rather
exp(x) = lim

n→∞
(1 + x

2n
)2n

.

We will start with some estimates.

Lemma 6.5. Let V be a C1,1 local group. Then, there exists ε > 0 such that for
all k ∈ N, x1, . . . , xk ∈ Rn such that ∑ki=1 ∣xi∣ we have

x1 ∗ . . . ∗ xk = x1 + . . . + xk +O
⎛
⎝ ∑

1≤<i<j≤k

∣xi∣∣xj ∣
⎞
⎠

(6.1)

where the constant in O can depend on ε but not on k.

Proof. We will prove it by induction on k. The base case, k = 2 is exactly
the C1,1 condition. But since will have to keep track of the constants in the
O-notation, let us write it more concretely4.

Let C, δ be such that for all ∣x∣, ∣y∣ ≤ δ we have

x ∗ y = x + y +∠(C ∣x∣∣y∣)

and in particular, x ∗ y = ∠(∣x∣ + ∣y∣ +C ∣x∣∣y∣).
To illustrate the argument let us do the case k = 3:

x1 ∗ x2 ∗ x3 = x1 ∗ x2 + x3 +∠(C ∣x1 ∗ x2∣∣x3∣)
= x1 + x2 + x3 +∠(C ∣x1∣∣x2∣) + ∠(C(∣x1∣ + ∣x2∣ +C ∣x1∣∣x2∣)∣x3∣)
= x1 + x2 + x3 +∠(C(∣x1∣∣x2∣ + ∣x1∣∣x3∣ + ∣x2∣∣x3∣) +C2∣x1∣∣x2∣∣x3∣)

= x1 + x2 + x3 +∠(C−1
3

∏
i=1

(1 +C ∣xi∣) −C−1 −
3

∑
i=1

∣xi∣)

Let ε < min{δe−C , δ,1}.

4

Notation (Unconventional). We use ∠(f(x)) to denote some function which in
norm/absolute value is ≤ f(x).
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Induction Hypothesis: For all k and all x1, . . . , xk such that ∑ki=1 ∣xi∣ < ε we
have

x1 ∗ . . . ∗ xk =
k

∑
i=1

xi +∠(C−1
k

∏
i=1

(1 +C ∣xi∣) −C−1 −
k

∑
i=1

∣xi∣) (IH1)

=
k

∑
i=1

xi +∠
⎛
⎝
C exp(C) ∑

1≤i<j≤k

∣xi∣∣xj ∣
⎞
⎠

(IH2)

and

∣x1 ∗ . . . ∗ xk ∣ ≤ C−1
k

∏
i=1

(1 +C ∣xi∣) −C−1 (IH3)

≤ δ (IH4)

Induction Step: Let x1, . . . , xk+1 such that ∑k+1
i=1 ∣xi∣ < ε. Then, by the Induc-

tion hypothesis (IH4) ∣x1∗. . .∗xk ∣ < δ and ∣xk+1∣ < ε < δ. (IH1) (and consequently
(IH3)) follows from the following:

x1 ∗ . . . ∗ xk ∗ xk+1 = x1 ∗ . . . ∗ xk + xk+1 +∠(C ∣xk+1∣∣x1 ∗ . . . ∗ xk ∣)

=
k+1

∑
i=1

xi +∠(C−1
k

∏
i=1

(1 +C ∣xi∣) −C−1 −
k

∑
i=1

∣xi∣)

+∠(C ∣xk+1∣ (C−1
k

∏
i=1

(1 +C ∣xi∣) −C−1))

=
k+1

∑
i=1

xi +∠(C−1
k+1

∏
i=1

(1 +C ∣xi∣) −C−1 −
k=1

∑
i=1

∣xi∣)

where the first estimate follows from the C1,1 condition, the second estimate
follows (IH1) of the induction hypothesis.

To get (IH2). Let us estimate the obtained error

C−1
k

∏
i=1

(1 +C ∣xi∣) −C−1 −
k

∑
i=1

∣xi∣ ≤ C ∑
1≤i<j≤k

∣xi∣∣xj ∣
k

∏
l=1

(1 +C ∣xl∣)

≤ C ∑
1≤i<j≤k

∣xi∣∣xj ∣ exp(C
k

∑
l=1

∣xl∣)

≤ C exp(C) ∑
1≤i<j≤k

∣xi∣∣xj ∣

where the second inequality follows from 1 + a ≤ exp(a) and the last inequality
follows from ∑ki=1 ∣xi∣ < ε < 1.

Similarly, (IH4) follows from estimating the error in (IH3)

C−1
k

∏
i=1

(1 +C ∣xi∣) −C−1 ≤
k

∑
i=1

∣xi∣
k

∏
j=1

(1 +C ∣xi∣)

≤ ε exp(Cε) ≤ ε exp(C) ≤ δ.
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This concludes the proof of the lemma.

Similarly, one proves the following.

Lemma 6.6. Let V be a C1,1 local group. Then, there exists ε > 0 such that for
all k ∈ N, n ∈ Z and x, y, z,w, x1, . . . , xk, y1, . . . , yk ∈ V such that

∣x∣, ∣y∣, ∣nz∣, ∣nw∣,
k

∑
i=1

∣xi∣,
k

∑
i=1

∣yk ∣ < ε

we have

x∗−1 = −x +O(∣x∣2) (6.2)

x ∗ y ∗ x∗−1 ∗ y∗−1 = O(∣x∣∣y∣) (6.3)

x ∗ y ∗ x∗−1 = y +O(∣x∣∣y∣) (6.4)

y ∗ x∗−1, x∗−1 ∗ y = O(∣x − y∣) (6.5)

x1 ∗ . . . ∗ xk = y1 ∗ . . . ∗ yk +O (
k

∑
i=1

∣xi − yi∣) (6.6)

1

2
∣n∣∣z −w∣ ≤ ∣z∗n −w∗n∣ ≤ 2∣n∣∣z −w∣ (6.7)

(zw)∗n = z∗nw∗n +O(∣n∣2∣z∣∣w∣) (6.8)

where all constants in O can depend on ε but are uniform in k,n, x, . . .

Exercise 6.7. Prove Lemma 6.6

6.4 The exponential map

Definition 6.8. Define the map exp ∶ V ′ → V for V ′ ⊂ V small enough, by

exp(x) = lim
n→∞

( 1

2n
x)

∗2n

Lemma 6.9. The limit is well-defined.

Proof. We will show that xn ∶= ( 1
2nx)

∗2n

is Cauchy. Denote by a = y
2n+1 . By

Ineq. (6.7) of Lemma 6.6

∣xn+1 − xn∣ = ∣a2n+1

− (2a)2n

∣ = ∣(a2)2n

− (2a)2n

∣ ≤ 2 ⋅ 2n ⋅ ∣a2 − 2a∣,

and
a2 − 2a ≤ C ∣a∣2

Combining the two we get

∣xn+1 − xn∣ = 2 ⋅ 2n ⋅C ⋅ ∣ x

2n+1
∣
2

= C ∣x∣2
2n+1

The geometric series converges, and hence xn is Cauchy.
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Lemma 6.10. The map exp has the following properties:

(i) For all sufficiently small x ∈ Rn we have exp(x) = x +O(∣x∣2).

(ii) For all sufficiently small x, y we have

exp(x + y) = lim
n→∞

(exp(x/2n) ∗ exp(y/2n))2n

.

(iii) For all sufficiently small x, y we have

exp(x + y) = exp(x) ∗ exp(y) +O(∣x∣∣y∣).

(iv) For all sufficiently small x, y ∈ Rn we have

∣(exp(x) − exp(y)) − (x − y)∣ ≤ 1

2
∣x − y∣.

(v) exp is a local homeomorphism.

(vi) For x ∈ Rn and s, t ∈ R such that ∣sx∣, ∣tx∣ are sufficiently small, we have:

exp(sx + tx) = exp(sx) ∗ exp(tx).

Proof. (i) follows from the proof of Lemma 6.9.
(ii) follows from

∣( x
2n

∗ y

2n
)

2n

− (x + y
2n

)
2n

∣ ≤ 2 ⋅ 2n ⋅ ∣ x
2n

∗ y

2n
− x + y

2n
∣ ≤ O(2 ⋅ 2−n ⋅ ∣x∣∣y∣)

where the first inequality is (6.7) of Lemma 6.6, and the second inequality is
the C1,1 condition.

(iii) follows from (ii) and (6.8) of Lemma 6.5
To prove (iv) first note that by (iii) we have,

exp(x) = exp(x − y) + exp(y) +O(∣x − y∣∣y∣)
Ô⇒ exp(x) − exp(y) = exp(x − y) +O(∣x − y∣∣y∣)

From (i) we have,

exp(x − y) = x − y +O(∣x − y∣2)

Combining the two we get

exp(x) − exp(y) = x − y +O(∣x − y∣2) +O(∣x − y∣∣y∣)

and (iv) follows.
Clearly exp(x) is continuous. Let x0 ∈ Rn small enough, by the Banach

Fixed-Point Theorem for the contracting function gx0(x) = x−exp(x)+x0, there
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exists a unique x ∈ Rn (small enough) so that gx0(x) = x, that is exp(x) = x0.
This shows that it is a local bijection, and (v) follows.

To prove (vi), it suffices to prove it for s, t ∈ Q. That is, it suffices to prove
that exp(kx) = exp(x)∗k for all k ∈ Z.

First let us prove it for k = 2,

exp(2x) = lim(2x/2n)2n

= lim(x/2n−1)2n

= lim(x/2n)2n+1

=
= lim(x/2n)2n

∗ (x/2n)2n

= exp(x)∗2

Now, fix some arbitrary k, observe first that exp(kx) = exp(kx/2n)∗2n

for
all n by the case k = 2.

Hence,

∣ exp(kx) − (exp(x/2n)∗2n

)∗k ∣ = ∣ exp(kx/2n)∗2n

− (exp(x/2n)∗k)∗2n

∣
= 2 ⋅ 2n ⋅ ∣ exp(kx/2n) − exp(x/2n)∗k ∣
≤ 2 ⋅ 2n ⋅ (∣ exp(kx/2n) − (kx/2n)∣ + ∣(kx/2n) − exp(x/2n)∗k ∣)
≤ 2 ⋅ 2n ⋅O (∣kx/2n∣2 + k2∣x/2n∣2) → 0

where the last inequality follows from (i) and Lemma 6.5.

Corollary 6.11. Every C1,1 local group has a neighborhood of the identity which
is isomorphic (as a topological local group) to a radially homogeneous C1,1 local
group.
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7 The Adjoint representation and the Baker-
Campbell-Hausdorff Formula

7.1 The adjoint representation

Following Corollary 6.11, we will assume throughout this section that our C1,1

local group is radially homogeneous. We will prove that for such a local group
the operation ∗ is real-analytic, and in particular, that it is a Lie local group.
We will give a precise formula for the multiplication which is known as the
Baker-Campbell-Hausdorff Formula.

Lemma 7.1. For x, y, z small enough we have:

x ∗ y = x + y +O(∣x + y∣∣x∣) (7.1)

x ∗ y = x + y +O(∣x + y∣∣y∣) (7.2)

x ∗ y = x ∗ z +O(∣y − z∣) (7.3)

y ∗ x = z ∗ x +O(∣y − z∣) (7.4)

Proof. The (7.1) follows from C1,1 of x = (x ∗ y) ∗ (−y). Others are done in a
similar fashion.

Lemma 7.2 (Adjoint representation). For all sufficiently small x the map Adx ∶
Rd → Rd defined by Adx(y) = x ∗ y ∗ (−x) is linear for sufficiently small y.

Proof. Since Adx is continuous it suffices to show that it is additive, that is,

x ∗ (y + z) ∗ (−x) = (x ∗ y ∗ (−x)) ∗ (x ∗ z ∗ (−x))

for sufficiently small x, y, z.

y + z = (y/n + z/n)n

Ô⇒ x ∗ (y + z) ∗ (−x) = x ∗ (y/n + z/n)n ∗ (−x)
= (x ∗ (y/n + z/n) ∗ (−x))n

= n(x ∗ (y/n + z/n) ∗ (−x))
= n(x ∗ ((y/n) ∗ (z/n) +O(1/n2)) ∗ (−x))

Lemma 7.1 = n(x ∗ (y/n) ∗ (z/n) ∗ (−x) +O(1/n2))
= n(x ∗ (y/n) ∗ (−x) ∗ x ∗ (z/n) ∗ (−x) +O(1/n2))
= n(x ∗ (y/n) ∗ (−x) + x ∗ (z/n) ∗ (−x) +O(1/n2) +O(1/n2))
= x ∗ y ∗ x + x ∗ z ∗ (−x) +O(1/n)

Take n→∞.

Observation 7.3. • ∥Adx −I∥ = O(∣x∣)

• ∥Adx −Ady ∥ = O(∣x − y∣)
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• Adx∗y = Adx ∗Ady, i.e, x↦ Adx is a local homomorphism.

• t↦ Adtx is a continuous homomorphism to GL(Rd).

• Proposition 6.4 Ô⇒ there exists a linear transformation adx ∶ Rd → Rd
such that Adtx = exp(tadx), and in particular adx = d

dt
Adtx ∣t=0.

• Ô⇒ adx+y = adx +ady (since Adtx ∗Adty = Adt(x+y) +O(∣t∣2)) and adtx =
tadx.

• Hence adx is linear in x. I.e, adx(y) = [x, y] where [, ] is a bilinear form
Rd → Rd.

Corollary 7.4. The map x→ Adx is real analytic.

7.2 The Baker-Campbell-Hausdorff formula

Working under the assumption of a radially homogeneous C1,1 group.

Lemma 7.5. For x, y sufficiently small we have

x ∗ y = x + F (Adx)y +O(∣y∣2)

where

F (z) = z log z

z − 1
.

Proof. Let z = x ∗ y − x. Note that z = O(∣y∣) and y = (−x) ∗ (x + z). It suffices
to show that

x ∗ (x + z) = 1 − exp(−adx)
adx

z +O(∣z∣2) (7.5)

Assuming we have shown the above equality, since

1 − exp(−adx)
adx

= Adx −1

Adx log(Adx)
= F (Adx)−1

Rewriting (7.5) we get

y = F (Adx)−1(x ∗ y − x) +O(∣y∣2)

and the claim follows by inverting F (Adx).
to prove (7.5), let n be a large integer, expand the LHS as a telescopic sum

n−1

∑
j=0

(−j + 1

n
x) ∗ (j + 1

n
x + j + 1

n
z) − (− j

n
x) ∗ ( j

n
x + j

n
z)

The first summand is

(− j
n
x) ∗ (− 1

n
x) ∗ ( 1

n
x + 1

n
z) ∗ ( j

n
x + j

n
z).
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From Lemma 7.1 (− 1
n
x) ∗ ( 1

n
x + 1

n
z) = 1

n
z + O( ∣z∣

n2 ) and thus the preceding
expression becomes

(− j
n
x) ∗ ( 1

n
z) ∗ ( j

n
x + j

n
z) +O( ∣z∣

n2
).

By definition of Ad it equals

(Ad
−

j
nx

1

n
z) ∗ (− j

n
x) ∗ ( j

n
x + j

n
z) +O( ∣z∣

n2
).

By Lemma 7.1 (− j
n
x) ∗ ( j

n
x + j

n
z) = O(∣z∣) and by the C1,1 the preceding ex-

pression becomes

(Ad
−

j
nx

1

n
z) + (− j

n
x) ∗ ( j

n
x + j

n
z) +O( ∣z∣

2

n
) +O( ∣z∣

n2
).

Inserting this in the telescopic sum we get that the LHS of 7.5 is

n−1

∑
j=0

Ad
−

j
nx

1

n
z +O(∣z∣2) +O( ∣z∣

n
)

Writing Ad
−

j
nx

= exp(− j
n

adx) and letting n → ∞, the Riemann sum converges

to the Riemann integral

(−x) ∗ (x + z) = ∫
1

0
exp(−tadx)z dt +O(∣z∣2)

= − exp(−tadx)z
adx

∣
t=1

t=0

= 1 − exp(−adx)
adx

z +O(∣z∣2)

as desired.

As a corollary we get the following formula for multiplication.

Theorem 7.6 (Baker-Campbell-Hausdorff Formula). Let V be a radially ho-
mogeneous C1,1 local group, then for x, y sufficiently small, one has

x ∗ y = x + ∫
1

0
F (AdxAdty)y dt. (7.6)

As a consequence, the multiplication in a radially homogeneous C1,1 local group
is real-analytic.

Proof. Use the telescopic sum

x ∗ y = x +
n−1

∑
j=0

x ∗ (j + 1

n
y) − x ∗ ( j

n
y)
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From Lemma 7.5 we get that the left summand is

x ∗ (j + 1

n
y) = x ∗ ( j

n
y) ∗ ( 1

n
y)

= x ∗ ( j
n
y) + F (AdxAd j

ny
)( 1

n
y) +O(1/n2)

and conclude that

x ∗ y = x +
n−1

∑
j=0

F (AdxAd j
ny

)( 1

n
y) +O(1/n).

As n→∞ these Riemann sums converge to the desired integral.
Since the RHS of the Baker-Campbell-Hausdorff Formula is real analytic,

we get the consequence.
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8 Local and global Lie groups

8.1 Lie local groups

Theorem 8.1 (Lie’s First Theorem). For a Lie local group, exp is a local
diffeomorphism.

Proof. Since φ ∶“R→ Rd” defined by φ(t) = exp(tx) is a homomorphism with

d

dt
∣t=0φ = x

(since exp(x) = x +O(∣x∣2)), we have that φ satisfies the ODE

d

dt
φ(t) =DLφ(t)(x)

where L is the left multiplication map. That is, f(t, x) = exp(tx) is a solution
to the ODE

d

dt
f(t, x) = F (f(t, x), x)

for some smooth F . By the existence and uniqueness theorem for solutions to
ODE, we know that the (unique) solution f(t, x) = exp(tx) is differentiable k
times around (0,0), for all k. By using the homomorphism property of exp(tx)
we get that it is smooth in a neighborhood of (0,0), and also at neighborhood
of (1,0). Hence exp is smooth.

The map D0 exp(x) = x hence, by the inverse function theorem it is a local
diffeomorphism.

In a similar way to Proposition 6.4, one proves the following.

Proposition 8.2. Let V be a Lie local group, and let φ ∶ R → V be a local
continuous homomorphism. Then there exists a unique x ∈ V such that φ(t) =
exp(tx) for small enough t.

Exercise 8.3. Prove Proposition 8.2. (Hint: follow the same proof as Proposi-
tion 6.4.

Let us use this proposition to show how to upgrade continuous homomor-
phisms to smooth homomorphisms.

Proposition 8.4. Let G,H be local Lie groups, and let Φ ∶ G→H be a contin-
uous homomorphism. Then Φ is smooth.

Proof. Let x ∈ G. The map t ↦ Φ(exp(tx)) is a continuous homomorphism,
and hence by the previous proposition there exists a unique L(x) ∈H such that
Φ(exp(tx)) = exp(tL(x)). Since exp are local diffeomorphisms, it suffices to
show that the map L is smooth (in a 0 neighborhood). In fact, L is linear.
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For all s ∈ R small enough, we clearly have L(sx) = sL(x). For additivity, let
x, y ∈ G,

Φ(exp(t(x + y))) = Φ( lim
n→∞

(exp(tx/2n) exp(ty/2n))2n

(8.1)

= lim
n→∞

(Φ(exp(tx/2n))Φ(exp(ty/2n)))2n

(8.2)

= lim
n→∞

(exp(tL(x)/2n) exp(tL(y)/2n))2n

(8.3)

= exp(t(L(x) +L(y))). (8.4)

Corollary 8.5. A local group can have at most one smooth structure.

8.2 Smooth manifolds and Lie groups

Definition 8.6. A topological space M is an n-topological manifold if it is
Hausdorff and locally homeomorphic to R2.

A smooth atlas on a topological manifold is an open cover {Uα} of M and
homeomorphisms {φα ∶ Uα → Vα ⊆ Rn} such that the transition maps φβ ○ φ−1

α

are smooth wherever they are defined. A topological manifold with a smooth
atlas is a smooth manifold.

Example 8.7. 1. Rn with the obvious smooth structure.

2. Any open subset of a smooth manifold is a smooth manifold. In particular
GL(n,R) is a smooth manifold.

3. If M and N are smooth manifolds (of dimension k and l respectively)
then M ×N is a smooth manifold (of dimension n = k + l) with the atlas
φα × ψβ → Rn = Rk ×Rl.

A smooth map between smooth manifolds is a map f ∶M → N (with smooth
atlases {φα}α,{ψβ}β repsectively) such that ψβ ○ f ○ φ−1

α is smooth whenever it
is defined. We will denote by C∞(M,N) the set of all smooth maps M → N ,
and by C∞(M) = C∞(M,R).

A smooth map f ∶M → N is a diffeomorphism of smooth manifolds if it has
a smooth inverse.

Definition 8.8. A Lie group is a topological group G which is a smooth mani-
fold, and such that the group operation ⋅ ∶ G×G→ G and inverse map ⋅−1 ∶ G→ G
are smooth maps.

Example 8.9. Rn, GL(n,R) are Lie group.

Fact 8.10. All closed subgroups of GL(n,R) are smooth manifolds. In partic-
ular, the subgroups SL(n,R),O(n,R),U(n,R),SU(n,R), . . . are Lie groups.
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Every Lie group is locally (diffeomorphically) isomorphic to a Lie local group,
in particular, it can be made into a radially homogeneous C1,1 local group using
the map exp. We have seen that exp is a local diffeomorphism. Therefore, every
Lie group is locally (diffeomorphically) isomorphic to a radially homogeneous
Lie local group. In fact, we know that it is then automatically real-analytic.

Theorem 8.11. Let G be a topological group, if G is locally isomorphic to a
Lie local group, then G is a Lie group.

Proof. Let φ′ ∶ U ′ → V ′ be the local isomorphism identifying a 1-neighborhood
U ′ of G with a Lie local group V ′. Let us φ ∶ U → V be the restriction of φ′ to
a smaller 1-neighborhood U ⊆ U ′ to be determined in the argument.

We define φg ∶ gU → V by φg = φ ○Lg−1 . And let F = {φg}g∈G be an atlas on
G.

The atlas F is smooth. Let gU,hU be two intersecting neighborhood, then
h−1g ∈ U2 ⊆ U ′ then the transition map

φh ○ φ−1
g = φ ○Lh−1 ○Lg ○ φ−1 = φ ○Lh−1g ○ φ−1

If we denote by y = φ′(h−1g) then the transition map becomes

φh ○ φ−1
g = Ly

which is a diffeomorphism by assumption on V .
To show that G with the smooth structure F is a Lie group, we have to

show that the multiplication map m ∶ G×G→ G and inverse map i ∶ G→ G are
smooth.

The inverse map is smooth. To show that i is smooth it suffices to show
that φg ○ i ○ φ−1

g−1 is a smooth map around 0.

φg ○ i ○ φ−1
g−1 = φ ○Lg−1 ○ i ○Lg−1 ○ φ−1 (8.5)

= φ ○ cg−1 ○ i ○ φ−1 (8.6)

= (φ ○ cg−1 ○ φ−1) ○ (φ ○ i ○ φ−1) (8.7)

The map φ ○ i ○ φ−1 is simply the inverse map in V , hence it is smooth.
The map φ ○ cg−1 ○ φ−1 is a local continuous homomorphism of V , which by
Proposition 8.4 is smooth.

Exercise 8.12. Show that the multiplication map is smooth.

Exercise 8.13. Show that any continuous homomorphism between Lie groups
is smooth. Deduce that there is a unique smooth structure on a topological
group that makes it into a Lie group.
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9 Topological Vector Spaces

Definition 9.1. A topological vector space (over R)is a vector space V over R
with a topology such that + ∶ V × V → V and ⋅ ∶ R × V → V are continuous.

Our goal in this section is to prove the following theorem.

Theorem 9.2. Let V be a locally compact Hausdorff topological vector space.
Then V is isomorphic (as a topological vector space) to Rd for some finite d.

Lemma 9.3. Every finite dimensional Hausdorff topological space has the usual
topology.

Proof. Let V be a finite dimensional Hausdorff topological space. Let e1, . . . , ed
be a basis for V . Consider the bijective map T ∶ Rd → V given by T (α1, . . . , αd) =
α1e1 + . . . + αded. Since V is a topological space, T is continuous. It suffices to
show that T is open. It suffices to show that V has some open neighborhood U
of 0 such that T −1(U) is bounded (since by dilating and translating it will give
us the a basis).

Let F be the unit sphere in Rd, F is compact. Hence, T (F ) is closed, and
we can find a 0 neighborhood U ′ such that U ′ ∩ T (F ) = ∅. By continuity of
scalar multiplication, we may find an open 0 neighborhood U and ε > 0 such that
(−ε, ε) ⋅ U ⊂ U ′. It follows that T −1(U) ⊂ B(0,1/ε) ⊂ Rd (since (−ε, ε) ⋅ T −1(U)
must avoid the unit sphere).

Corollary 9.4. In a Hausdorff topological vector space, every finite dimensional
subspace is closed.

Proof. Let W ⊂ V be a finite dimensional subspace of V . Let v ∈ V −W . Then
Rv + W is a finite dimensional topological space, which is therefore homeo-
morphic to Rd. It follows that v has a neighborhood which does not intersect
W .

Proof of Theorem 9.2. Let K be a compact 0 neighborhood of V . Clearly V is
spanned by K.

Since 1
2
K is also a 0 neighborhood, it follows by compactness thatK ⊆ S+ 1

2
K

for some finite S in K.
Let W be the subspace generated by S. So K ⊆ W + 1

2
K. Iterating we get

that K ⊆W + 1
2nK for all n. Since for every open 0 neighborhood contains 1

2nK

for some large n, it follows that K ⊆W =W . Hence W = V .

Exercise 9.5. Can you prove Theorem 9.2 using Gleason-Yamabe for abelian
groups?
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10 Gleason Metrics

Our goal is to show a sufficient condition for being radially homogeneous C1,1

local group using metrics on groups.

Definition 10.1 (Gleason metric). A weak Gleason metric d on a topological
group G, is a left-invariant metric which generates the topology on G for which
there exists some C > 0 such that:

(GM1) (Escape property) If g ∈ G and n ≥ 1 is such that n∥g∥ ≤ C then ∥gn∥ ≥
1
c
n∥g∥.

where ∥g∥ = d(g,1).
A Gleason metric d on a topological group G is a weak Gleason metric that

satisfies in addition

(GM2) (Commutator estimate) If g, h ∈ G are such that ∥g∥, ∥h∥ ≤ 1
C

then ∥[g, h]∥ ≤
C∥g∥∥h∥.

where [g, h] = g−1h−1gh.

Our goal is the following theorem.

Theorem 10.2. Let G be a locally compact topological group with a weak Glea-
son metric. Then, G is isomorphic to a Lie group.

For most of this section we will assume G has a Gleason metric, and in the
last subsection we will prove that a weak Gleason metric can be upgraded to a
Gleason metric using convolution.

10.1 Estimates on Gleason metrics

In what follows, let G be a locally compact group with a Gleason metric d. In
the following section we will need the following estimates for a Gleason metric.

Lemma 10.3. 1. (approximate right invariance) If g, h, k are small enough,
then d(gk, hk) ∼ d(g, h).

2. (commutation estimate) If g, h are small enough, then d(gh, hg) = O(∥g∥∥h∥).

3. (power estimates) If n ≥ 1 and ∥g∥, ∥h∥ ≤ ε/n, then

d(gnhn, (gh)n) = O(n2∥g∥∥h∥)

and
d(gn, hn) ∼ nd(g, h)

Proof. From left invariance we get ∥g∥ = ∥g−1∥, and from the commutator es-
timate and left invariance we get ∥h−1gh∥ ∼ ∥g∥. Hence the approximate right
invariance follows by

d(gk, hk) = ∥k−1(h−1g)k∥ ∼ ∥h−1g∥ = d(g, h).
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The commutation estimate follows directly from left invariance and the com-
mutator estimate.

For the first estimate, It suffices to show that

d((gh)ign−ihn−i, (gh)i+1gn−i−1hn−i−1) = O(n∥g∥∥h∥)

uniformly in 1 ≤ i < n. By left invariance, and approximate right invariance we
need to show

d(gn−i−1h,hgn−i−1) = O(n∥g∥∥h∥).
By the commutation estimate d(gn−i−1h,hgn−i−1) ≪ ∥gn−i−1∥∥h∥ ≪ n∥g∥∥h∥ as
desired.

Now, define k = h−1g then ∥k∥ = d(g, h) ≤ 2ε/n. We have

d(hnkn, hn) = ∥kn∥ ∼ n∥k∥

by the escape property. On the other hand,

d(gn, hnkn) ≪ n2∥h∥∥k∥

and the second power estimate follows.

10.2 The space of 1-parameter subgroups

Let G be a topological group. A 1-parameter subgroup is a continuous homo-
morphism φ ∶ R → G. Let us denote by L(G) the set of 1-parameter subgroup
in G with the compact-open topology. Recall that the compact-open topology
is the topology generated by the sub-basis VK,U = {φ∣φ(K) ⊂ U} for all compact
K ⊂ R and all open U ⊆ G. If G is metrizable it is convenient to view this
topology as the sup-metric on compact sets.

We will show that if G has a Gleason metric then the space L(G) is in
fact a locally compact topological vector space over R, and as such must be
isomorphic (as a topological vector space) to Rd for some d, and that the map
L(G) ∋ φ ↦ φ(1) ∈ G is a local isomorphism which makes G locally into a
radially homogeneous C1,1 local group, and thus into a Lie group.

Lemma 10.4. There exists ε > 0 small enough and C > 0 large enough such
that for all g ∈ G and n ∈ N such that ∥gi∥ ≤ ε for i = 1, . . . , n, we have ∥g∥ ≤ 1

n
.

Proof. Let δ = min{ 1
2C
,1}, and let ε = δ

C
. Let k = max{j ∶ j∥g∥ ≤ δ}, it suffices

to show that k ≥ n.
For k + 1 we have

δ < (k + 1)∥g∥ ≤ 2k∥g∥ ≤ 2δ ≤ 1

C
.

Thus, by the escape property,

∥gk+1∥ ≥ 1

C
(k + 1)∥g∥ > δ

C
= ε

Therefore, if ∥gi∥ ≤ ε for all i = 1, . . . , n then k ≥ n.
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Lemma 10.5. L(G) is locally compact.

Proof. Let φ0 ∈ L(G), We will use the Arzela-Ascoli theorem to prove that a
the neighborhood

F ∶= {φ ∈ L(G)∣ sup
t∈[−T,T ]

d(φ(t), φ0(t)) ≤ ε}

of φ0 is compact for small enough ε, T . Let us choose T so that ∥φ0(t)∥ ≤ ε for
all t ∈ [−T,T ].
Theorem 10.6 (Arzela-Ascoli). Let X be a compact Hausdorff space and Y
a metric space. Then F ⊆ C(X,Y ) is compact in the compact-open topology if
and only if it is equicontinuous, pointwise precompact and closed.

Here X = [−T,T ] ⊆ R, Y = (G,d). Clearly, F is closed, and since G is locally
compact F is relatively compact for small enough ε. So it remains to show that
F is equicontinuous. In fact, the functions in F are K-Lipschitz continuous for
some K on [−T,T ], and thus equicontinuous.

Note that for all φ ∈ F , we have ∥φ(t)∥ ≤ 2ε for all t ∈ [−T,T ]. For small
enough ε, Lemma 10.4 implies that ∥φ(T /n)∥ ≤ 1/n, thus ∥φ(r)∥ ≤ ∣r∣/T for all
r ∈ Q and hence also for all r ∈ R. By the homomorphism property ∥φ(t)−φ(s)∥ =
∥φ(t − s)∥ ≤ ∣t − s∣/T for all t, s ∈ [−T,T ], as desired.

This proof also shows that all 1-parameter subgroups are locally Lipschitz.
Now let us endow L(G) with a (real) vector space structure.

Scalar multiplication: Let c ∈ R, and φ ∈ L(G). Then, define

cφ(t) ∶= φ(ct).

Addition: For φ,ψ ∈ L(G), let us define φ + ψ using the limit

(φ + ψ)(t) ∶= lim
n→∞

(φ(t/n)ψ(t/n))n.

We still have to show that this limit exists and is in L(G).

Lemma 10.7. If φ,ψ ∈ L(G), then φ + ψ is well-defined and in L(G).

Proof. To show that the limit converges we will show that it is Cauchy (recall
that G is complete since it is locally compact). We will prove the stronger claim

sup
m≥1

sup
1≤n′≤n

d ((φ(t/n)ψ(t/n))n
′

, (φ(t/nm)ψ(t/nm))n
′m) ÐÐÐ→

n→∞
0

Note that if the claim is true for t/2 then it is true for t (WHY?). Therefore,
we may assume that t is small enough. Since φ,ψ are locally Lipschitz, we have
∥φ(t/n)∥, ∥ψ(t/n)∥ ≪ ε/n for all n. Therefore, from Lemma 10.3 we have

d(φ(t/n)ψ(t/n), (φ(t/nm)ψ(t/nm))m) ≪m2(ε/nm)2 = ε2/n2.
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And again by Lemma 10.3

d((φ(t/n)ψ(t/n))n
′

, (φ(t/nm)ψ(t/nm))n
′m) ≪ n′ε2/n2 ≪ ε/n→ 0

The above argument is uniform in t as long as t is small enough. Hence, it
converges uniformly on compact to the limit. Hence, the limit is continuous.
To prove that φ + ψ is a homomorphism, by the density of rationals, it suffices
to show that

(φ + ψ)(at)(φ + ψ)(bt) = (φ + ψ)((a + b)t)
and

(φ + ψ)(−t) = (φ + ψ)(t)−1

for all a, b ∈ N, t ∈ R. The first follows from the computation

(φ + ψ)(at) = lim
n→∞

(φ(at/n)ψ(at/n))n = lim(φ(t/n)ψ(t/n))an

and the same for the other terms in the equation. Similarly,

(φ + ψ)(−t) = lim
n→∞

(φ(−t/n)ψ(−t/n))n

= lim
n→∞

(ψ(t/n)φ(t/n))−n

= lim
n→∞

ψ(t/n) ⋅ (φ(t/n)ψ(t/n))−n ⋅ ψ(t/n)−1

= (φ + ψ)(t)−1

Lemma 10.8. L(G) is a topological vector space.

Proof. Let us first show that L(G) is a vector space over R:

Associativity of addition. That is, we have to show that for all t ∈ R and
φ,ψ, η ∈ L(G)

((φ + ψ) + η)(t) = (φ + (ψ + η))(t).
But in fact, it suffices to prove it for small t.

We have seen that

d((φ + ψ)(t), (φ(t/n)ψ(t/n))n) ≪ ε2/n,

and
d((φ + ψ)(t/n), φ(t/n)ψ(t/n)) ≪ ε2/n2.

Similarly,

d(((φ + ψ) + η)(t), ((φ + ψ)(t/n)η(t/n))n) ≪ ε2/n

hence (by Lemma 10.3)

d(((φ + ψ) + η)(t), (φ(t/n)ψ(t/n)η(t/n))n) ≪ ε2/n.
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A similar computation shows that

d((φ + (ψ + η))(t), (φ(t/n)ψ(t/n)η(t/n))n) ≪ ε2/n,

and the associativity follows.

Exercise 10.9. Prove the that L(G) satisfies the remaining vector space ax-
ioms.

To show that it is a topological vector space. It is easy to see that the scalar
multiplication is continuous. To show that addition is continuous it suffices
to check that it is continuous at (0,0). That is, for all ε > 0 if φ,ψ satisfy
supt∈[−1,1] ∥φ(t)∥ ≤ δ, supt∈[−1,1] ∥ψ(t)∥ ≤ δ then supt∈[−1,1] ∥(φ + ψ)(t)∥ ≤ ε. In-
deed, by Lipschitz continuity, ∥φ(t)∥ ≪ δ∣t∣ and ∥ψ(t)∥ ≪ δ∣t∣ and therefore,
∥(φ + ψ)(t)∥ ≪ δ.

Now we can define an exponential map L(G) → G by exp(φ) ∶= φ(1). Note
that this map is continuous.

Proposition 10.10. The image of any neighborhood of the origin in L(G) is
a neighborhood of the identity in G.

Proof. Idea: to show that L(G) is not trivial if G is non-discrete. Let gn → 1
in G. If we denote by Nn = ⌊ε/∥gn∥⌋, then by the escape property ∥gNn∥ ∼ ε.
Consider φn(t) ∶= g⌊tNn⌋

n for a sequence gn → 1. The maps φn satisfy ∥φ(t)∥ ≪
ε∣t∣ + ε

Nn
and the approximate homomorphism property

d(φn(t + s), φn(t)φn(s)) → 0.

φn are asymptotically equicontinuous, and by a generalization of Arzela-Ascoli
they converge to a continuous homomorphism φ, with ∥φ(1)∥ ∼ ε.
Exercise 10.11. Complete the details of this proof idea.

1. Prove the needed version of Arzela-Ascoli.

2. Show that φn are indeed ‘asymptotically equicontinuous’ and that a con-
verging subsequence will converge to a homomorphism.

Let us proceed to the proof of the proposition. We may assume that the
origin neighborhood K is compact and convex, and that exp(K) is contained
in the ball of radius ε around the identity.

Assume that K is not an identity neighborhood, then there exists a sequence
gn of elements in G − exp(K) such that gn → 1. By compactness of exp(K) we
can write gn = knhn where kn ∈ exp(K) are closest to gn. That is, ∥hn∥ =
d(gn, kn) = d(gn, exp(K)) ≤ ∥gn∥. Hence hn, kn → 1 as well.

Consider the sequence φn(t) ∶= h
⌊tNn⌋
n for Nn = ⌊ε/∥kn∥⌋. As before, by

passing to a subsequence we may assume that φn → φ ∈ L(G).
Let ψn ∈ K be such that exp(ψn) = ψn(1) = kn, we have ψn → 0 ∈ L(G) (by

the escape property ∥ψn(t)∥ ≪ t∥hn∥).
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Now, consider the element exp(ψn+ 1
Nn
φ). Let us compute its distance from

gn.
By the power estimates of Lemma 10.3,

d(exp(ψn + 1/Nnφ), exp(ψn) exp(1/Nnφ)) ≪ ∥kn∥/Nn

By approximate right invariance Lemma 10.3 and triangle inequality,

d(exp(ψn + 1/Nnφ), gn) ≪ ∥kn∥/Nn + d(hn, exp(1/Nnφ))

But from the power estimates of Lemma 10.3,

d(hn, exp(1/Nnφ)) ≪ d(hNn
n , exp(φ))/Nn = o(1/Nn)

and thus
d(exp(ψn + 1/Nnφ, gn) = o(1/Nn)

For large enough n we may assume that ψn + 1/Nnφ ∈ K (recall that ψn →
0 and K is an identity neighborhood), and so the distance from gn to K is
o(1/Nn) = o(d(gn, kn)). But this contradicts the minimality of kn.

Exercise 10.12. Prove that the exponential map exp ∶ L(G) → G a local
homeomorphism.

Proposition 10.13. G is locally a local C1,1 group.

Proof. Identify a local neighborhood of G with its pre-image in L(G). By
Theorem 9.2, L(G) is homeomorphic to Rd, with the norm

∥φ∥ ∶= lim
n→∞

n∥φ(1/n)∥.

Exercise 10.14. Show that this norm exists and generates the topology on
L(G), and that exp is locally a bi-Lipschitz map.

The C1,1 inequality will follow from the power estimate of Lemma 10.3 as
follows

d(φ(1)ψ(1), (φ(1/n)ψ(1/n))n) ≪ ∥φ(1)∥∥ψ(1)∥
for all n. Hence, by the definition of φ + ψ,

d(φ(1)ψ(1), (φ + ψ)(1)) ≪ ∥φ(1)∥∥ψ(1)∥

as desired.

10.3 From weak Gleason metrics to Gleason metrics

Finally let us show that a weak Gleason metric suffices.

Proposition 10.15. Let G be a locally compact topological group, every weak
Gleason metric on G is a Gleason metric.
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Proof. Idea: compare the weak Gleason metric to a left-invariant metric con-
structed using a bump function which comes from a convolution of a Lipschitz
function.

Let ε > 0 be small enough, to be chosen later. and let ψ ∈ Cc(G) be the
function supported on B(1, ε) defined by

ψ(x) = max{1 − ∥x∥
ε
,0} .

And let
φ(x) = ψ ∗ ψ(x) = ∫ ψ(y)ψ(y−1x)dµ(y).

Let us denote by τ(g) the action of g on Cc(G) by left multiplication, and
denote by ∂g = 1 − τ(g). The function φ gives us a norm

∥g∥φ = ∥φ(⋅) − φ(g−1⋅)∥∞ = ∥∂gφ∥∞,

and a corresponding left-invariant metric

dφ(g, h) = ∥g−1h∥φ.

Note that since ψ is Lipschitz we have

∥∂gψ∥∞ = O(∥g∥)

As a step towards the commutator estimate, let us show that

∥∂g∂hφ∥∞ = O(∥g∥∥h∥) (10.1)

whenever g, h ∈ B(1, ε).
Note that by the left invariance of the Haar measure one has

τ(h)(F ∗G)(x) = ∫ F (y)G(y−1h−1x)dµ(y)

= ∫ F (h−1y)G(y−1x)dµ(y)

= (τ(h)F ) ∗G(x).

One also has

τ(g)(F ∗G)(x) = ∫ F (y)G(y−1g−1x)dµ(y) = ∫ F (y)(τ(gy)G(y−1x))dµ(y)

where gy = y−1gy.
Combining the two in our case, one gets

∂g∂hψ(x) = ∫ (∂hψ)(y)(∂gyψ)(y−1x)dµ(y).

When h ∈ B(1, ε), the integrand is nonzero only when y ∈ B(1,2ε), and since
ψ is Lipschitz continuous we have

∥∂g∂hψ∥∞ = O(∥h∥ sup
y∈B(1,2ε)

∥gy∥)
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It suffices to show that ∥gy∥ = O(g) for y ∈ B(1,2ε). This follows from the
escape property in the following way. Let n be such that n∥g∥ ≤ ε then ∥gn∥ ≤ ε,
and ∥(gy)n∥ = ∥(gn)y∥ ≤ 5ε, and by the escape property ∥gy∥ = O( 1

n
).

Now, by (10.1) we get that for small enough g, h

∥[g, h]∥φ = ∥τ([g, h])φ − φ∥∞
= ∥τ(g)τ(h)φ − τ(h)τ(g)φ∥∞
= ∥∂g∂hφ − ∂h∂gφ∥∞ = O(∥g∥∥h∥)

It remains to prove ∥x∥ = O(∥x∥φ) for small enough x. Let n be such that
n∥x∥φ < ∥φ∥∞. And so ∥xn∥φ < ∥φ∥∞. This implies that φ and τ(xn)φ have
overlapping supports, and thus xn ∈ B(1,4ε), which by the escape property
implies ∥x∥ = O( 1

n
), as desired.
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11 No Small Subgroups and Escape Norms

Definition 11.1. A topological group G has no small subgroup (NSS) if there
exists an 1 neighborhood that does not contain any non-trivial subgroups.

Remark 11.2. Note that a Lie group has the NSS property, as locally in radially
homogeneous coordinates, any cyclic group must escape some neighborhood of
the identity element.

Our goal is to prove the converse.

Theorem 11.3. A locally compact group is NSS if and only if it is isomorphic
to a Lie group.

To appreciate this Theorem, let us observe the following immediate corollary.

Corollary 11.4. A closed subgroup of a Lie group is a Lie group.

Proof. A closed subgroup of a locally compact group with the NSS property, is
a locally compact group with the NSS property

Lemma 11.5. Let G be an NSS group. Let U be a symmetric precompact open
identity neighborhood such that U has no non-trivial subgroups. Then the open
sets

U[N] = {g ∈ G ∶ g, g2, . . . , gN ∈ U}
form a local basis of open 1-neighborhoods for G.

Proof. U[N] is clearly open. Assume gn ∈ Un are such that gn ∉ V for some

open 1-neighborhood. Then, from compactness of U , we may assume that
gn → g ∈ U − V . Then, gn ∈ U for all n, contradicting the assumption on U .

Proof of Theorem 11.3 (minus a technical lemma). As we explained in Remark
11.2, one implication is obvious. To prove the other implication we will show
that an NSS locally compact group admits a weak Gleason metric, which then,
by Theorem 10.2 we will be done.

Let U0 be a symmetric precompact open 1-neighborhood whose closure does
not contain any non-trivial subgroups. Define the escape norm of U0, by

∥g∥U0 = inf { 1

n + 1
∶ g ∈ U0[n]} .

Strictly speaking it is not a group norm (as it does not satisfy the triangle
inequality), but since U0 does not have any non-trivial subgroup, it is positive,
i.e ∥g∥U0 > 0 for 1 ≠ g ∈ G.

By Lemma 11.5, if we replace U0 by another symmetric precompact open
1-neighborhood V0 whose closure does not contain any non-trivial subgroups,
we get a ‘bi-Lipschitz’ equivalent escape norm. That is,

∥g∥V0 ≪ ∥g∥U0 ≪ ∥g∥V0 . (11.1)
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To force the escape norm to satisfy the triangle inequality we modify by
taking an infimum

∥g∥∗,U0 = inf {
n

∑
i=1

∥gi∥U0 ∶ g = g1, . . . , gn} .

Clearly ∥ ⋅ ∥∗,U0 is a pseudo-norm, i.e,

∥gh∥∗,U0 ≤ ∥g∥∗,U0 + ∥h∥∗,U0 and ∥g∥∗,U0 = ∥g−1∥∗,U0 .

However, when taking the infimum we might have lost its positivity. For this we
will need the following Lemma which can be seen as a quasi-triangle inequality
for ∥ ⋅ ∥U0 .

Lemma 11.6. For any n and any g1, . . . , gn ∈ G, one has

∥g1⋯gn∥U0 ≤M
n

∑
i=1

∥gi∥U0

(where the constant M depends only on U0).

We postpone the proof of this lemma, and continue with the proof of Theo-
rem 11.3

Lemma 11.6 implies,

1

M
∥g∥U0 ≤ ∥g∥∗,U0 ≤ ∥g∥U0 .

In other words, ∥⋅∥U0 ≍ ∥⋅∥∗,U0 are bi-Lipschitz equivalent. In particular, ∥g∥∗,U0

is positive for 1 ≠ g ∈ G, and therefore ∥ ⋅ ∥∗,U0 defines a left-invariant metric by

d∗,U0(g, h) = ∥g−1h∥∗,U0 .

By Lemma 11.5, the escape-norm ’balls’ {g ∶ ∥g∥U0 < ε} form a local basis
for the topology on G. Therefore, the norm ∥ ⋅ ∥∗,U0 generates the topology on
G.

To show that ∥ ⋅ ∥∗,U0
defines a weak Gleason metric, it remains to show that

it has the escape property. That is, there exists ε > 0 such that if g ∈ G,n ∈ N
are such that n∥g∥∗,U0 < ε, then ∥gn∥∗,U0 ≫ n∥g∥∗,U0 .

Let U1 be an identity neighborhood such that U2
1 ⊆ U0. Let ε > 0 be such

that ∥h∥∗,U0 < ε Ô⇒ h ∈ U1. If n∥g∥∗,U0 < ε then by the triangle inequality for
all i = 1, . . . , n, ∥gi∥∗,U0 < ε and hence gi ∈ U1.

Hence, if n∥g∥∗,U0 < ε and 1, gn, g2n, . . . , gnm ∈ U1 then 1, g, g2, . . . , gnm ∈
U2

1 ⊆ U0. Therefore, if n∥g∥∗,U0 < ε, ∥gn∥U1 ≥ n∥gn∥U0 . The claim follows since
∥ ⋅ ∥U1 , ∥ ⋅ ∥U0 , ∥ ⋅ ∥∗,U0 are bi-Lipschitz equivalent.

This concludes the proof of Theorem 11.3.
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Proof of Lemma 11.6. The proof of the lemma is a bit weird. We start by
assuming that the desired inequality

∥g1⋯gn∥U0 ≤M
n

∑
i=1

∥gi∥U0 (11.2)

holds for some M , and prove that M could be improved to some constant O(1)
that does not depend on the initial M . After we are done proving this, we will
see how to tweak the proof so that some tweaked version of (11.2) obviously
holds, but which would still allow for the desired conclusion.

Note that under this assumption ∥g∥∗,U0 is a well defined norm, and by (11.2)
satisfies

1

M
∥g∥U0 ≤ ∥g∥∗,U0 ≤ ∥g∥U0 ,

for some M .
Let us ψ ∶ G→ R be the Lipschitz function defined by

ψ(x) = max{0,1 −Md∗,U0(x,U0)}

On the one hand, it satisfies

∣∂gψ(x)∣ ≤M∥g∥U0 (11.3)

On the other, it is supported on

{x ∶ d∗,U0(x,U0) ≤M} ⊆ {x ∶ dU0(x,U0) ≤ 1} ⊆ U2
0 .

Let L be a large number, to be chosen later, and let U1 be a small 1-
neighborhood depending on L, to be chosen later. Define η ∶ G→ R by

η(x) = sup{1 − j

L
∶ x ∈ U j1U0} ∪ {0}.

For all g ∈ U1 and x ∈ G, it satisfies

∣∂gη(x)∣ ≤
1

L
, (11.4)

and η is supported in UL1 U0, which by choosing U1 small enough, we may assume
UL1 U0 ⊆ U2

0 .
η and ψ are bounded, compactly supported, Borel measurable functions.

Therefore, their convolution φ = ψ ∗ η is well defined, continuous, supported on
U4

0 and satisfies φ(1) = µ(U0) ≫ 1.
It follows that if n∥g∥φ < φ(0), then ∥gn∥φ < φ(0) Ô⇒ gn ∈ U8

0 . Hence,

∥g∥U8
0
≪ ∥g∥φ

for all g ∈ G, and therefore by (11.1) also

∥g∥U0 ≪ ∥g∥φ. (11.5)
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As in the proof of Proposition 10.15, we can write

∂g∂hφ(x) = ∫
G
(∂hψ)(y)(∂gyη)(y−1x)dµ(y).

If h ∈ U0 the integrand vanishes unless y ∈ U3
0 . Let U2 ⊆ U1 be a small

1-neighborhood such that gy ∈ U1 for all g ∈ U2 and y ∈ U3
0 . Then, if h ∈ U0 and

g ∈ U2 by (11.3) and (11.4) we have

∣∂g∂hφ(x)∣ ≪
M

L
∥h∥U0 . (11.6)

By the identity

∂gn = n∂g +
n−1

∑
i=0

∂gi∂g

and triangle inequality we have

∥gn∥φ = n∥g∥φ +O (
n−1

∑
i=0

∥∂gi∂gφ∥∞)

By the inequality (11.6) we conclude

∥gn∥φ = n∥g∥φ +O (n∥M
L

∥g∥U0)

whenever g, . . . , gn ∈ U2. Using some bound ∥gn∥φ = O(1) we get

∥g∥φ ≪
1

n
+ nM

L
∥g∥U0

Optimizing over n we get

∥g∥φ ≪ ∥g∥U2 +
M

L
∥g∥U0

And by (11.1),

∥g∥φ ≪ (M
L
+OU2(1)) ∥g∥U0 .

This, together with the triangle inequality

∥g1 . . . gn∥φ ≤
n

∑
i=1

∥gi∥φ

and (11.5), gives

∥g1 . . . gn∥U0 ≪ (M
L
+OU2(1))

n

∑
i=1

∥gi∥U0 .

By choosing L large enough, and iterating we get

∥g1 . . . gn∥U0 ≪ C
n

∑
i=1

∥gi∥U0
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for some constant C.
Now, to actually prove the lemma, one cannot assume a priori that such a

bound exists. Instead, one destroys slightly the escape norm by adding an ε > 0
to it. This automatically implies a constant M in (11.2) of order ≈ 1/ε. One
repeats the argument above to show

∥g1 . . . gn∥U0 ≪ C
n

∑
i=1

(∥gi∥U0 + ε)

with C which does not depend on ε, and then take ε → 0 to complete the
proof.
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12 Subgroup trapping and the Gleason-Yamabe
Theorem

12.1 The subgroup trapping property

Definition 12.1. For a 1-neighborhood V in a topological group G, an element
g is trapped in V if ⟨g⟩ ⊆ V . We denote by Q[V ] the set of trapped elements,
or equivalently the union of all subgroups contained in V . A topological group
has the subgroup trapping property, if every 1-neighborhood U contains a 1-
neighborhood V , such that ⟨Q[V ]⟩ ⊆ U .

Theorem 12.2 (weak Gleason-Yamabe for groups with subgroup trapping).
Let G be a locally compact group with the subgroup trapping property, and let U
be an open 1-neighborhood, then there exists G′ ≤ G open, and a compact normal
subgroup N �G′ contained in U , such that G′/N is Lie.

Proof. By Theorem 11.3 it suffices to show that we can choose G′ and N as
above such that G′/N is a locally compact group with NSS.

Let G and U be as in the theorem, by decreasing U we may assume that U is
compact. From the subgroup trapping property there exists a 1-neighborhood
V ⊆ U such that ⟨Q[V ]⟩ ⊆ U . Hence, H = ⟨Q[V ]⟩ ⊆ U is a compact group.

We can thus apply the Gleason-Yamabe Theorem for compact groups (Corol-
lary 5.8) to H. Therefore, there exists a compact normal subgroup N�H which
is contained in V , such that H/N is a Lie group, and in particular has NSS.

Let W be a small identity neighborhood such that:

1. WNW ⊆ V (can be achieved by compactness of N)

2. (WNW ∩H)/N is a 1-neighborhood of H/N which does not contain non-
trivial subgroups in H/N (can be achieved since H/N has NSS).

Let G′ = ⟨W,N⟩. Clearly, G′ is open in G.
To prove that N � G′, let g ∈ W . Since Ng ⊆ WNW ⊆ V we get that

Ng ∈ Q[V ] hence Ng ∈ H. Therefore, Ng ⊆ (WNW ∩ H). By the second
property above Ng ≤ N . Therefore, N �G′

To prove that G′/N has NSS, observe that if K ⊆ WNW /N is a subgroup
of G′/N , then KN ⊆WNW ⊆ V is a subgroup in G, hence KN ⊆ Q[V ], hence
KN ⊆ H, from which it follows that KN/N is a subgroup of H/N which is
contained in (WNW ∩H)/N , contradicting the second property above.

12.2 Weak Gleason-Yamabe Theorem

Theorem 12.3 (Weaker version of Gleason-Yamabe). Let G be a locally com-
pact group, and let U be a 1-neighborhood in G. Then there exist G′ ≤ G an
open subgroup, and N �G′ contained in U , such that G′/N is a Lie group.

By Theorem 12.2, it suffices to show the following.

53



Proposition 12.4. Every locally compact metrizable group has the subgroup
trapping property.

In order to prove this proposition, we will need the following lemma which
controls the growth rate of subsets of Q[V ] for small enough V .

Lemma 12.5 (Finite trapping). Let G be a locally compact group, let U be
an open precompact 1-neighborhood, and let m ≥ 1. Then there exists a 1-
neighborhood V such that if Q ⊆ Q[V ] is a symmetric set containing the identity
satisfying that Qn ⊆ U then Qnm ⊆ U8.

We will postpone the proof of this lemma, and first prove the proposition.
In the proof we will encounter a limit of sets.

Definition 12.6. Let (X,d) be a metric space, and let A,B be compact subsets
of X. The Hausdorff distance of A,B is defined as

dH(A,B) = inf{ε∣Aε ⊃ B and Bε ⊃ A}
= ∥d(A, ⋅) − d(B, ⋅)∥∞

where Aε,Bε denote the ε-neighborhoods of A,B respectively.

Exercise 12.7. IfX is a compact metric space. Then the space of all non-empty
closed subsets of X is compact with respect to the the Hausdorff distance. (E.g
use Arzela-Ascoli on the space {d(A, ⋅)}A⊆X)

Proof of Proposition 12.4. Let G be a locally compact metrizable group, and
let U be a compact 1-neighborhood. Assume for contradiction, that G does not
have the subgroup trapping property. If Vi denotes the ball of radius 1/i around
1 in G, then by assumption ⟨Q[Vi]⟩ ⊈ U . Therefore, there exists a minimal ni
such that Q[Vi]ni+1 ⊈ U (and Q[Vi]ni ⊆ U). Note that ni →∞ since Vi converge
to 1.

Therefore, by Lemma 12.5, we can find a sequence mi → ∞ such that
Q[Vi]mini ⊆ U8.

Q[Vi]
n

i are closed subsets of the compact metric space U , therefore, they
have a converging subsequence (with respect to the Hausdorff metric) to some

E ⊆ U . Since for all m, Q[Vi]
mni → Em and Q[Vi]

mni ⊆ U8, we see that H = ⟨E⟩
is a compact subgroup of G contained in U8.

Let U ′ be a 1-neighborhood of G, to be chosen later. By the Gleason-
Yamabe Theorem for compact groups (Corollary 5.8) applied to H, there exists
a compact normal subgroup N �H contained in U ′, such that H/N is a Lie
group. Let π ∶ H → H/N be the quotient map. In particular, there exists some
1-neighborhood B ⊆H/N such that B10 does not contain non-trivial subgroups
of H/N . By compactness of H/N −B, we see that there exists k such that if
g ∈H/N −B then one of 1, g, . . . gk is not in B10.

We will derive a contradiction by showing that π−1(B8) and H − π−1(B10)
are arbitrarily close in G, while they are close and disjoint.
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Now, for ε > 0 small enough, let us consider the ε-neighborhood π−1(B)ε of
π−1B. Assume that ε is small enough so that π−1(B)ε ⊆ U . Since Q[Vi]ni+1 ⊈ U ,

then Q[Vi]ni+1 ⊈ π−1(B)ε. Let n′i ≤ ni be the smallest such that Q[Vi]n
′

i+1 ⊈
π−1(B)ε. In particular, Q[Vi]n

′

i ⊆ π−1(B)ε, and n′i →∞.

Using Lemma 12.5 again, we see that Q[Vi]n
′

im ⊆ (π−1(B)ε)8 for all m as
i→∞.

On the other hand, Q[Vi]n
′

i+1 converges to a subset of H in the Hausdorff

metric (since Q[Vi]ni →⊆ H Ô⇒ Q[Vi]2ni →⊆ H Ô⇒ Q[Vi]n
′

i+1 →⊆ H as

n′i ≤ ni). Let gi ∈ Q[Vi]n
′

i+1 − π−1(B)ε, then for large enough i gi is ε-close to

some hi ∈ H. It follows that hi ∉ π−1(B)ε, and hence hjii ∉ π−1(B10) for some

1 ≤ ji ≤ k. But then, gjii ∈ Q[Vi]k(n
′

i+1) and hence in (π−1(B)ε)8. It follows

that hjii ∈ H − π−1(B10) is arbitrarily close to some elements of π−1(B8), as
desired.

Proof of Lemma 12.5. Assume U,m as in the lemma. Let V be a small neigh-
borhood to be chosen later, and let Q ⊆ V such that Qn ⊆ U . Our goal is to
show that Qmn ⊆ U8.

The idea of the proof is to find a function φ (using convolution of ’Lipschitz’
functions) that depends on some large parameter M (to be chosen later) and
show that ∥q∥φ ≪ 1

nM
for all q ∈ Q. By the triangle inequality it implies that

∥g∥φ ≪ m
M

for all g ∈ Qmn, and the claim will follow by choosing M large enough
so that this inequality will imply that g ∈ U8.

Let ψ ∶ G→ [0,1] be the function defined by

ψ(x) = sup{1 − j

n
∶ x ∈ QjU} ∪ {0}.

Observe that ψ is supported in U2, and obeys

∥∂qψ∥∞ ≤ 1

n

for q ∈ Q. The second function η ∶ G→ R is defined by

η(x) = sup{1 − j

M
∶ x ∈ (V U

4

)jU} ∪ {0}.

where M will be chosen later (as explained above). By choosing V small enough

we assume (V U4)M ⊂ U , hence also η is supported in U2, and satisfies

∥∂gη∥∞ ≤ 1

M

for all g ∈ V U4

.
Let φ = ψ ∗ η. It is thus supported on U4 and ∥φ∥∞ ≫ 1 (independent on M

and V ). As before, if ∥g∥φ is sufficient small (e.g < ∥φ∥∞) then g ∈ U8.
Now let us estimate ∥q∥φ for q ∈ Q ⊆ Q[V ]. Recall from the proof of Propo-

sition 11.6 the identity

∂qn = n∂q +
n−1

∑
i=0

∂qi∂q
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and therefore

n∥q∥φ ≪ ∥qn∥φ +
n−1

∑
i=0

∥∂qi∂qφ∥∞

hence

∥q∥φ ≪
1

n
∥qn∥φ + sup

i=0,...,n−1
∥∂qi∂qφ∥∞.

We have seen that each of the expressions can be written as

∂qi∂qφ(x) = ∫
G
(∂qψ)(y)(∂(qn)yη)(y−1x)dµ(y)

Note that y ∈ U4 for it to be non trivial, and qn ∈ V since q ∈ Q[V ]. Therefore,
we may use our ’Lipschitz’ estimates to conclude

∣∂qi∂qφ(x)∣ ≪
1

Mn
.

Similarly, one estimates

∥qn∥φ ≪
1

M
,

and together they give

∥q∥φ ≪
1

nM
.

Now, for all g ∈ Qmn
∥g∥φ ≪

m

M
.

and by choosing M sufficiently large, we can guarantee that g ∈ U8, as desired.

12.3 Strong Gleason-Yamabe

Theorem 12.8 (Gleason-Yamabe). Let G be a locally compact group. Then
there exists G′ ≤ G open such that every 1-neighborhood U contains a compact
normal subgroup N �G′ such that G′/N is Lie.

In particular, if G is a Hausdorff locally compact group, then there exists
G′ ≤ G open such that G′ is an inverse limit of Lie groups.

Proof. In Proposition 3.2 we saw that the connected component G0 of 1 ∈ G is
a closed normal subgroup and H = G/G0 is totally disconnected. Let us denote
by π ∶ G → H the quotient map. By van-Danzig’s Theorem (Theorem 3.4), H
contains a compact open subgroup H ′ ≤ H. Let G′ = π−1(H ′) ≤ G be the open
subgroup pullback of H ′. Then G′ is connected-by-compact.

By the weak Gleason-Yamabe Theorem (Theorem 12.3), for every 1 ∈ U
open, there is an open subgroup G′′ ≤ G′ and a normal subgroup N ′′ � G′′

contained in U such that G′′/N ′′ is Lie. Since G′′ is open and G0 is connected,
we must have G0 ≤ G′′, hence G′′ = π−1(H ′′) where H ′′ = π(G′′) ≤H ′.
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Since H ′′ is open and H ′ is compact, it must have finite index [H ′ ∶H ′′] < ∞
and therefore [G′ ∶ G′′] < ∞. Let g1, . . . , gk ∈ G′ be coset representatives of G′′.
Hence N ′ = CoreG′(N ′′) = N ′′g1 ∩ . . .∩N ′′gk . Clearly, N ′�G′ is a compact and
contained in U . It remains to show that G′/N ′ is Lie.

By Theorem 11.3, it suffices to show that G′/N ′ has NSS. By the NSS
property of G′′/N ′′, there exists 1 ∈ V ⊆ G′ open, such that every subgroup of
V is contained in N ′′. By intersecting W = ⋂i=1,...,k V

gi we may assume that
every subgroup of W is contained in N ′′gi for all i = 1, . . . , k, and thus contained
in N ′. This completes the proof. ,
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13 Hilbert’s Fifth Problem and Beyond

13.1 Hilbert’s Fifth Problem

Theorem 13.1 (Solution to Hilbert’s Fifth Problem). Let G be a locally com-
pact topological group which is locally Euclidean, then G is Lie.

Proof. Assume that G is locally homeomorphic to Rd. Clearly, G is Hausdorff
and first countable. Moreover, G0 is open, since it suffices to show that an open
subgroup is Lie, by passing to G0 we may assume that G is connected. By
Theorem 12.8 G is an inverse limit lim←ÐGn of a sequence of Lie groups,

. . .→ Gn+1 → Gn → . . .→ 1.

Each Gn = G/Nn, where Nn � G are compact. Let us denote by Mn =
Nn/Nn+1 �Gn+1, then Gn+1/Mn+1 = Gn.

Note that the map qn ∶ Gn+1 → Gn gives a linear map between the finite
dimensional vector spaces (Lie algebras) L(qn) ∶ L(Gn+1) → L(Gn) which must
be surjective (since exp is a local homeomorphism, and the quotient map is a
local surjection). We can therefore find a linear injective section Tn ∶ L(Gn) →
L(Gn+1) such that L(qn) ○ Tn = idL(Gn)

If φ ∈ L(Gn) is a 1-parameter subgroup of Gn, then Tn(φ) is a 1-parameter
subgroup which is admissible with qn. i.e qn(Tn(φ))(t) = φ(t). Therefore, the
sequence Tn,m(φ) ∶= Tm ○ . . . ○ Tn(φ) for all m ≥ n is an admissible sequence
of 1-parameter subgroups. Which then give a 1-parameter subgroup Tn,∞(φ).
The map Tn,∞ ∶ L(Gn) → L(G) is injective and continuous (since it has a left
inverse L(G→ Gn)).

Therefore, ψn ∶ exp ○Tn,∞(φ) ○ exp−1 ∶ Un → U is a continuous injective map
from a 1-neighborhood Un in Gn to a 1-neighborhood U in G, which is a local
inverse to the quotient map Qn ∶ G → Gn. We may assume that Un and U are
homeomorphic to Rdn and Rd. It follows that dn ≤ d.

Therefore, the dimension of Gn must stabilize. Without loss of generality,
dim(Gn) = dim(Gn+1 for all n. It follows that dim(Mn) = 0 for all n, hence Mn

is finite (it is a compact Lie group of dimension 0). Therefore, N1/Nn are finite.
Since N1 = limnN1/Nn, we get that N1 is a profinite group, and in particular
totally disconnected.

We claim that the continuous injective map ψ = ψ1 ∶ U1 → U is a ho-
momorphism. Clearly ψ(1) = 1 and ψ(g)−1 = ψ(g−1). Let V be a small
symmetric connected open neighborhood in G1, such that V 3 ⊆ U1. Then
F = {ψ(g)ψ(h)ψ((gh)−1) ∣ g, h ∈ V } ⊆ G is contained in N1 (because ψ is a
local inverse to Q1), it contains 1, and connected. Since N1 is totally discon-
nected F = {1}.

Similarly, ψ(V ) commutes with N1. (For all k ∈ N1 consider the set

Fk = {ψ(g)−1kψ(g) ∣ g ∈ V } ⊆ G)

and apply a similar argument). Hence G is locally isomorphic to the local group
V ×N1.
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However, G is locally connected, hence N1 must be discrete, and G is there-
fore locally isomorphic to the Lie local group V . By Theorem 8.11 we are done.
,!

13.2 Hilbert-Smith Conjecture

Conjecture 13.2 (The Hilbert-Smith Conjecture). Let G be a locally compact
topological group, and let M be a connected (finite dimensional) manifold. If
G↷M continuously and faithfully then G is a Lie group.

Note that the all assumptions are needed:

1. If G is not locally compact, then we can take G = Diff(S1) ↷ S1.

2. If M is not connected, then we can take (R/Z)N ↷ R/Z ×N.

3. If the action is not continuous/faithful then we can easily find counter
examples.

Note also that the Hilbert-Smith Conjecture is a generalization of Hilbert’s
Fifth Problem. (If G is locally euclidean, then we can look at G0 ↷ G0, and
deduce by the conjecture that G0 is Lie, and hence G is Lie).

Remark 13.3. Using the Gleason-Yamabe Theorem one can deduce that if a
counter example to the conjecture exists then there is a counter example of the
form Zp ↷M .

Using this, the conjecture was proven when dim(M) ≤ 3 (The case ≤ 2 was
done by Montgomery-Zippin, and the case = 3 was done by Pardon in 2013).
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