1 Complexes, homology and cohomology

1.1 Simplicial complexes

Definition 1.1. Let V be a non-empty set. Let $\mathcal{P}_{\text {fin }}(V)$ be the collection of finite nonempty subsets of V. An (abstract) simplicial complex is a set $\Sigma \subseteq \mathcal{P}_{\text {fin }}(V)$ such that all singletons of V are in Σ and if $\tau \subseteq \sigma \in \Sigma$ then $\tau \in \Sigma$. We will denote $\operatorname{dim}(\sigma)=\# \sigma-1$, and denote by $\Sigma^{k}=\{\sigma \in \Sigma \mid \operatorname{dim} \sigma=k\}$. An element of Σ^{k} is called a k-simplex.

Given a simplicial complex Σ its realization $|\Sigma|$ is the topological space

$$
|\Sigma|=\left\{f \in[0,1]^{V}: \operatorname{supp} f \in \Sigma \wedge \sum f=1\right\}
$$

with the topology $A \subseteq|\Sigma|$ is open if and only if $A \cap[0,1]^{\sigma}$ is open in $[0,1]^{\sigma}$ for all $\sigma \in \Sigma$ (with the standard topology). Each k-simplex σ gives rise to a (geometric) simplex $|\Sigma| \cap[0,1]^{\sigma}$ in $|\Sigma|$ which is homeomorphic to \mathbb{D}^{k}. We will usually consider V, Σ to be finite, in which case $|\Sigma|$ can simply given the subset topology from $[0,1]^{V}$.

Example 1.2. If $V=a, b, c, d, e$ and Σ is the smallest simplicial complex containing the subsets $\{a, c\},\{b, c\},\{b, d\},\{c, d, e\}$ (I.e., Σ contains those sets and all of their subsets). Then $|\Sigma|$ is homeomorphic to the space shown in Figure 1 .

Figure 1: $|\Sigma|$

Exercise 1.3. Find a simplicial complex whose realization is homeomorphic to the 2 -sphere \mathbb{S}^{2}, the 2-torus \mathbb{T}^{2}, the projective plane $\mathbb{P}^{2} \ldots$

Show that the realization of a simplicial complex is naturally a CW complex.

1.2 Homology

Throughout, let $\mathbf{F}=\mathbf{F}_{2}=\{0,1\}$ the field with two elements.
Definition 1.4 (Simplicial chain complex over \mathbf{F}). Let Σ be a simplicial complex, consider the vector space $C_{k}(\Sigma)=\operatorname{Span}_{\mathbf{F}}\left(\Sigma^{k}\right)$, elements in C_{k} are called k-chains, and are formal finite sums of simplices of dimension k with coefficients in \mathbf{F}. We will often consider them simply as finite subsets of Σ^{k}. Consider the linear map $\partial_{k}: C_{k}(\Sigma) \rightarrow C_{k-1}(\Sigma)$ defined on the basis elements $\sigma \in \Sigma^{k}$ by

$$
\partial_{k} \sigma=\sum_{\sigma \supset \tau \in \Sigma^{k-1}} \tau .
$$

The sequence of spaces and maps $\left(C_{k}, \partial_{k}\right)$ is called the chain complex of Σ. Elements of C_{k} are called k-chains.

Exercise 1.5. Verify that $\partial^{2}=0$.

Definition 1.6 (Cycles, boundaries and homology). Denote by $Z_{k}(\Sigma)=\operatorname{ker} \partial_{k}$, and call its elements k-cycles. Denote by $B_{k}(\Sigma)=\operatorname{im} \partial_{k+1}$, and call its elements k-boundaries.

Then the k-th homology of Σ (with coefficients in \mathbf{F}) is defined as the vector space quotient

$$
H_{k}(\Sigma)=Z_{k}(\Sigma) / B_{k}(\Sigma) .
$$

Note that the previous exercise shows that indeed $B_{k} \subseteq Z_{k}$.
Fact 1.7. $H_{k}(\Sigma)$ is a homotopy equivalence invariant of the space $|\Sigma|$ and does not depend on the specific combinatorial structure of Σ. We will therefore simply denote $H_{k}(X)$ for a topological space which is homeomorphic to a realization of a simplicial complex.

Exercise 1.8. If Σ is finite, then its Euler characteristic is defined by $\chi(\Sigma)=\sum_{i}(-1)^{i} \# \Sigma^{i}$. Show that

$$
\chi(\Sigma)=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbf{F}_{2}}\left(H^{i}(\Sigma)\right)
$$

Let us try to understand the homology a bit better.
Exercise 1.9. Compute the homologies of the complex in Figure 1, or the 2-sphere, the 2-torus, etc.

Exercise 1.10. Show that every $\beta \in B_{0}(X)$ if and only if $\#(\beta \cap C)$ is even on every connected component C of Σ. Deduce that the dimension of $\operatorname{dim}\left(H_{0}(\Sigma)\right)$ is the number of connected components of Σ.

Observation 1.11. Note that $\zeta \in Z_{1}(X)$ if and only if every vertex is adjacent to an even number of edges in ζ.

Exercise 1.12. Let X be connected. Define the map $\mathfrak{h}: \pi_{1}(X, x) \rightarrow H_{1}(X)$ by sending the loop γ which we may assume is a concatenation of edges $\gamma=e_{1} \cdot \ldots \cdot e_{n}$ to the collection of edges which appear in γ odd number of times.

1. Show that \mathfrak{h} is a surjective homomorphism.
2. Let $N=\left\langle\left\{a^{2},[a, b] \mid \forall a, b \in \pi_{1}(X, x)\right\}\right\rangle$. Show that \mathfrak{h} induces an isomorphism

$$
\left(\pi_{1}(X)^{a b} /\left(\pi_{1}(X)^{a b}\right)^{2} \simeq\right) \quad \pi_{1}(X) / N \simeq H_{1}(X)
$$

by building an inverse map or by showing $N=\operatorname{ker} \mathfrak{h}$. (Where else did you see relations which are products of squares and commutators?)

1.3 Cohomology

Definition 1.13 (Cohomology). Now consider $C^{k}(\Sigma)=\operatorname{Hom}\left(C_{k}(\Sigma), \mathbf{F}\right) \simeq \mathbf{F}^{\Sigma^{k}}$, and the $\operatorname{map} \delta: C^{k} \rightarrow C^{k+1}$ defined by $\delta=\partial^{*}$, i.e., $(\delta f)(\alpha)=f(\partial \alpha)$ for all $\alpha \in C_{k+1}$ and $f \in C^{k}$. The sequence $\left(C^{k}, \delta\right)$ is called the cochain complex of Σ, and the elements of $C^{k}(\Sigma)$ are called k-cochains. We define $B^{k} \subseteq Z^{k} \subseteq C^{k}$ by $B^{k}(X)=\operatorname{im} \delta$ and $Z^{k}=\operatorname{ker} \delta$ (note that $B_{k} \subseteq Z_{k}$ because again we have $\delta^{2}=0$). Finally, the cohomology is defined by $H^{k}(\Sigma)=Z^{k} / B^{k}$.

Exercise 1.14. Show that $\alpha \in Z^{0}$ if and only if it is constant on connected components of Σ. Deduce that $H^{0}(\Sigma) \simeq \mathbf{F}^{\pi_{0}(\Sigma)}$ where $\pi_{0}(\Sigma)$ are the connected components of Σ.

Observation. $\alpha \in Z^{1}$ if and only if for every 2-simplex $\sigma, \alpha=1$ on either 0 or 2 of the edges of $\partial \sigma$.

Exercise 1.15. Assume that X is connected, and show that $H^{1}(X)=\operatorname{Hom}\left(\pi_{1}(X, x), \mathbf{F}\right)$. Hint: for every $\alpha \in H^{1}(X)$ define the homomorphism $\phi_{\alpha}(\gamma)$ to be the parity of the number of times γ passes over an edge e such that $\alpha(e)=1$.

Exercise 1.16 (Universal Coefficient Theorem). Show that the natural map $H^{n}(X) \rightarrow$ $\operatorname{Hom}\left(H_{n}(X), \mathbf{F}\right)$ is a well-defined isomorphism. In particular, if they are both finite dimension, then they are isomorphic. Give an alternative proof of the previous exercise.

