
1 Complexes, homology and cohomology

1.1 Simplicial complexes

Definition 1.1. Let V be a non-empty set. Let Pfin(V ) be the collection of finite non-
empty subsets of V . An (abstract) simplicial complex is a set ⌃ ⊆ Pfin(V ) such that all
singletons of V are in ⌃ and if ⌧ ⊆ � ∈ ⌃ then ⌧ ∈ ⌃. We will denote dim(�) = #� − 1, and
denote by ⌃k = {� ∈ ⌃ � dim� = k}. An element of ⌃k is called a k-simplex.

Given a simplicial complex ⌃ its realization �⌃� is the topological space

�⌃� = {f ∈ [0,1]V ∶ supp f ∈ ⌃ ∧�f = 1}
with the topology A ⊆ �⌃� is open if and only if A∩[0,1]� is open in [0,1]� for all � ∈ ⌃ (with
the standard topology). Each k-simplex � gives rise to a (geometric) simplex �⌃�∩ [0,1]� in�⌃� which is homeomorphic to Dk. We will usually consider V,⌃ to be finite, in which case�⌃� can simply given the subset topology from [0,1]V .
Example 1.2. If V = a, b, c, d, e and ⌃ is the smallest simplicial complex containing the
subsets {a, c},{b, c},{b, d},{c, d, e} (I.e., ⌃ contains those sets and all of their subsets).
Then �⌃� is homeomorphic to the space shown in Figure 1.
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Figure 1: �⌃�
Exercise 1.3. Find a simplicial complex whose realization is homeomorphic to the 2-sphere
S2, the 2-torus T2, the projective plane P2. . .

Show that the realization of a simplicial complex is naturally a CW complex.

1.2 Homology

Throughout, let F = F2 = {0,1} the field with two elements.

Definition 1.4 (Simplicial chain complex over F). Let ⌃ be a simplicial complex, consider
the vector space Ck(⌃) = SpanF(⌃k), elements in Ck are called k-chains, and are formal
finite sums of simplices of dimension k with coe�cients in F. We will often consider them
simply as finite subsets of ⌃k. Consider the linear map @k ∶ Ck(⌃) → Ck−1(⌃) defined on
the basis elements � ∈ ⌃k by

@k� = �
�⊃⌧∈⌃k−1

⌧.

The sequence of spaces and maps (Ck,@k) is called the chain complex of ⌃. Elements of Ck

are called k-chains.

Exercise 1.5. Verify that @2 = 0.
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Definition 1.6 (Cycles, boundaries and homology). Denote by Zk(⌃) = ker@k, and call its
elements k-cycles. Denote by Bk(⌃) = im@k+1, and call its elements k-boundaries.

Then the k-th homology of ⌃ (with coe�cients in F) is defined as the vector space
quotient

Hk(⌃) = Zk(⌃)�Bk(⌃).
Note that the previous exercise shows that indeed Bk ⊆ Zk.

Fact 1.7. Hk(⌃) is a homotopy equivalence invariant of the space �⌃� and does not depend
on the specific combinatorial structure of ⌃. We will therefore simply denote Hk(X) for a
topological space which is homeomorphic to a realization of a simplicial complex.

Exercise 1.8. If ⌃ is finite, then its Euler characteristic is defined by �(⌃) = ∑i(−1)i#⌃i.
Show that

�(⌃) =�
i

(−1)i dimF2(Hi(⌃))
Let us try to understand the homology a bit better.

Exercise 1.9. Compute the homologies of the complex in Figure 1, or the 2-sphere, the
2-torus, etc.

Exercise 1.10. Show that every � ∈ B0(X) if and only if #(� ∩ C) is even on every
connected component C of ⌃. Deduce that the dimension of dim(H0(⌃)) is the number of
connected components of ⌃.

Observation 1.11. Note that ⇣ ∈ Z1(X) if and only if every vertex is adjacent to an even
number of edges in ⇣.

Exercise 1.12. Let X be connected. Define the map h ∶ ⇡1(X,x)→H1(X) by sending the
loop � which we may assume is a concatenation of edges � = e1 ⋅ . . . ⋅ en to the collection of
edges which appear in � odd number of times.

1. Show that h is a surjective homomorphism.

2. Let N = �{a2, [a, b]�∀a, b ∈ ⇡1(X,x)}�. Show that h induces an isomorphism

�⇡1(X)ab�(⇡1(X)ab)2 � � ⇡1(X)�N �H1(X)
by building an inverse map or by showing N = kerh. (Where else did you see relations
which are products of squares and commutators?)

1.3 Cohomology

Definition 1.13 (Cohomology). Now consider C
k(⌃) = Hom(Ck(⌃),F) � F⌃k

, and the
map � ∶ Ck → C

k+1 defined by � = @∗, i.e., (�f)(↵) = f(@↵) for all ↵ ∈ Ck+1 and f ∈ Ck. The
sequence (Ck

, �) is called the cochain complex of ⌃, and the elements of Ck(⌃) are called
k-cochains. We define B

k ⊆ Zk ⊆ Ck by B
k(X) = im � and Z

k = ker � (note that Bk ⊆ Zk

because again we have �
2 = 0). Finally, the cohomology is defined by H

k(⌃) = Zk�Bk.

Exercise 1.14. Show that ↵ ∈ Z0 if and only if it is constant on connected components of
⌃. Deduce that H0(⌃) � F⇡0(⌃) where ⇡0(⌃) are the connected components of ⌃.
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Observation. ↵ ∈ Z1 if and only if for every 2-simplex �, ↵ = 1 on either 0 or 2 of the edges
of @�.

Exercise 1.15. Assume that X is connected, and show that H1(X) = Hom(⇡1(X,x),F).
Hint: for every ↵ ∈H1(X) define the homomorphism �↵(�) to be the parity of the number
of times � passes over an edge e such that ↵(e) = 1.
Exercise 1.16 (Universal Coe�cient Theorem). Show that the natural map H

n(X) →
Hom(Hn(X),F) is a well-defined isomorphism. In particular, if they are both finite dimen-
sion, then they are isomorphic. Give an alternative proof of the previous exercise.
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