
2 Splittings and Bass-Serre Theory

2.1 Graph of spaces

First, let us give the definition of a graph á la Serre.

Definition 2.1 (Graph à la Serre). A graph � is a 5 tuple (V, �E, o, t, ⋅̄) satisfying:
1. V, �E are its sets of vertices and (directed) edges respectively;

2. o, t ∶ �E → V are its origin and terminus maps; and

3. ⋅̄ ∶ �E → �E satisfies ¯̄e = e and ē ≠ e for all e ∈ �E, and o(ē) = t(e).
Denote by E be the collection of pairs {e, ē} of elements e ∈ �E. Elements of E are the
(undirected) edges of �.

Note that in this definition, the graph is undirected, but the collection �E is the collection
of directed edges. Each edge has an origin vertex o(e) and a terminal vertex t(e), and ē

stands for the same edge with the reverse direction.

Observation 2.2. Every graph gives rise to a topological graph (i.e., 1-dimensional CW
complex) in an obvious way. We will not really distinguish between the two unless needed.

Now we are ready of the main definition in this course:

Definition 2.3 (A graph of spaces). A graph of spaces (GOS) X is a 4 tuple

(�,{Xv},{Xe},{ie ∶Xe →Xv})
consisting of

1. a graph � = (V, �E, o, t, ⋅̄),
2. a vertex space Xv (edge space Xe) for each vertex v ∈ V (resp. edge e ∈ �E so that

Xe =Xē), and

3. a continuous map ie ∶Xe →Xt(e) for each e ∈ �E.

We will say that the graph of spaces is ⇡1-injective if all the maps ie are ⇡1-injective
1.

Its realization is the quotient

X = (�
v

Xv)�(�
e

Xe × [−1,1])� ∼
where ∼ is the equivalence relation generated by

Xe × [−1,1] ∋ (x,1) ∼ ie(x) ∈Xt(e) and
Xe × [−1,1] ∋ (x, t) ∼ (x,−t) ∈Xē × [−1,1].

for all e ∈ �E, t ∈ [−1,1], x ∈Xe.

We say that a space X splits2 if X is the realization of a graph of spaces.
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Figure 2: Graph of spaces with underlining graph an edge and a loop

See Figure 2 for two examples of a graph of spaces in which the underlining graph has
only one edge.

Exercise 2.4. A pair of pants is a 3-holed sphere, i.e., the compact surface of genus 0
and 3 boundary components. Prove that every closed orientable surface of genus ≥ 2 splits
over simple closed curves into pairs of pants. That is, every closed orientable surface is the
realization of graph of groups in which all vertex spaces are pairs of pants, and all edge
spaces are S1. Show that this is a ⇡1-injective splitting. How many curves must be in such
a splitting?

Definition 2.5. An action of a group G on a graph � is an action of G on V, �E such that
all the maps o, t, ⋅̄ are G-equivariant3.

The action G � � is without inversions if ge ≠ ē for all g ∈ G,e ∈ �E. Note that in this
case ��G is again a graph.

Observation 2.6. The assumption that the action is without inversions is not a strong one,
as if G � � has inversions, then the action of G on the graph obtained from � by making
each edge into two edges has no inversions.

Exercise 2.7. 1. Explain why a cover of a graph of spaces is a graph of spaces.

2. Show that there is a continuous map from the realization X of a graph of spaces X to
(the topological model of) its underlining graph � such that every curve in � can be
lifted to X.

3. Deduce that the universal cover of a graph of spaces is a tree of spaces (i.e., a graph
of spaces in which the underlining graph is a tree).

4. Explain how the action of ⇡1(X) on the universal cover of X by deck transformations
induces an action on the underlining tree.

1A continuous map f ∶ X → Y between path connected spaces is ⇡1-injective if f∗ ∶ ⇡1(X) → ⇡1(Y ) is
injective.

2Usually we will say that it splits over a collection of spaces to mean that the edge spaces are in this
collection

3Given actions G � X and G � Y a function f ∶ X → Y is G-equivariant if f(gx) = gf(x) for all
g ∈ G,x ∈X
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2.2 Graph of spaces with one edge

If a space X splits then it splits also over a graph with one edge. Therefore, the case of a
splitting with one edge is especially important.

Assume that X is a ⇡1-injective graph of spaces whose underlining graph � has one edge,
and let X be its realization. Then, there are two cases to consider:

Case 1. Separating. � has 2 vertices {v,w}, and the edge e connects them.

Definition 2.8 (Free product with amalgamation). Let A,B,C be groups, and let � ∶ C →
A, ∶ C → B be two monomorphisms4. Then the pushout A ∗C B is called a free product
with amalgamation of A,B over C (or simply amalgam or amalgamation). It is the group

A ∗C B = A ∗B � ∀c ∈ C, �(c) =  (c).
The amalgam is non-trivial is �(C) ≠ A or  (C) ≠ B.

Exercise 2.9. Show that ⇡1(X) is the free product with amalgamation of ⇡1(Xv) and
⇡1(Xw) along ⇡1(Xe).

Case 2. Non-separating. In this case � has one vertex v and e is a loop at v.

Definition 2.10 (HNN extension). Let A,C be groups, and let �, ∶ C → A be two
monomorphisms. Then the HNN extension of A over C is the group

A∗C = A ∗ �t� � ∀c ∈ C, t�(c)t−1 =  (c).
The element t is called the stable letter of the HNN extension. An HNN is always non-trivial.

Exercise 2.11. Show that if � has one vertex v and one edge e, then ⇡1(X) is an HNN
extension of ⇡1(Xv) over ⇡1(Xe). What is the stable letter?

Definition 2.12. We say that a group G splits5 if it is a non-trivial amalgam or an HNN
extension.

@ In class6 we will discuss how the structure of such groups is fairly easy to understand
(normal forms, and Britton’s lemma)

2.3 Graph of groups

In general, given a ⇡1-injective graph of spaces X , we can associate to it a graph of groups
(defined below), and the fundamental group of its realization is the fundamental group of
the associated graph of groups.

Definition 2.13. A graph of groups (GOG) G is a 4-tuple (�,{Gv},{Ge},{◆e ∶ Ge → Gv})
consisting of a graph � = (V,E, o, t, ⋅̄), a group Gv (resp. Ge) for each v ∈ V (resp. edge
e ∈ E such that Ge = Gē), and monomorphisms ◆e ∶ Ge → Gt(e).

4A monomorphism is an injective homomorphism
5Again, we will usually be interested in specific splitting in which we specify the possible edge and/or

vertex groups
6The symbol @ means that we will cover something in class,
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Observation 2.14. If X = (�,{Xv},{Xe},{ie ∶Xe →Xv}) is a ⇡1-injective graph of spaces,
then by definition G = (�,{⇡1(Xv)},{⇡1(Xe)},{(ie)∗ ∶ ⇡1(Xe) → ⇡1(Xv)}) is a graph of
groups.

When X is not ⇡1-injective one does not get a graph of groups this way, however, one
can remedy this by considering instead of ⇡1(Xv) and ⇡1(Xe) their image in ⇡1(X).

We would like to define the fundamental group of a graph of groups in such a way that
would fit with the observation above. That is, if G is the graph of groups associated with
a ⇡1-injective graph of spaces, then ⇡1(G) is isomorphic to the fundamental group of the
realization of X .

There are several ways of defining the fundamental group of a graph of groups. Here are
three: as a subgroup, as a quotient and from a topological space.

Definition 2.15 (the group F(G)). Define first the group

F(G) = ∗v∈V Gv ∗ F ( �E) � ∀e ∈ �E, ē = e−1
∀e ∈ �E, ∀g ∈ Ge, e◆e(g)e−1 = ◆ē(g)

Definition 2.16 (As a subgroup). Now, for a vertex ∗ ∈ V define ⇡1(G,∗) to be the
subgroup of elements g1e1g2e2 . . . gnengn+1 in F(G) so that e1e2 . . . en is a closed path based
at ∗, and gi ∈ Go(ei), and gn+1 ∈ G∗.
Definition 2.17 (As a quotient). Choose a spanning tree T ⊆ �, and set ⇡1(G, T ) to be the
quotient of F(G) by the normal closure of {e � e ∈ �E(T )}.
Definition 2.18 (From topological fundamental group). Given G. Build a graph of spacesX whose induced graph of groups is G by choosing for each vertex group Gv a space (e.g.
a polygonal complex or a simplicial complex) with ⇡1(Xv) = Gv. Similarly a polygonal
complex for each edge group Xe. Let ie be continuous maps Xe → Xv such that (ie)∗ = ◆e.
Define ⇡1(G,X ) to be the fundamental group of the realization of X .
Exercise 2.19. * Show all 3 definitions (and all possible choices within each) give rise to
isomorphic groups.

@ What is so nice about amalgams and HNN extensions?

2.4 Bass-Serre Theory

Theorem 2.20 (From action to GOG). Let G act on a tree T without inversions, then
G is the fundamental group of a graph of groups G whose underlining graph is T �G, its
vertex groups are stabilizers of vertices, and its edge groups are stabilizers of edges, and its
inclusion maps ◆ are inclusions of edge stabilizers in their endpoint stabilizer.

Proof. @

Theorem 2.21 (From GOG to action). If G is the fundamental group of a graph of groupsG, then G� T such that G is the graph of groups corresponding to this action.

Proof. By the third definition, G = ⇡1(G) is the fundamental group of a ⇡1-injective graph
of spaces X . By Exercise 2.7, its universal cover is a tree of spaces, and G acts on it.
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Figure 3: Three free splittings of the free group.

Exercise 2.22. Describe the trees (and the action on it) corresponding to the following
splittings:

1. The splitting of the torus T2 = S1 × S1 over the simple closed curve {p} × S1.
2. The Klein bottle K2 decomposes as a connected sum of two real projective planes P2.

3. The Baumslag Solitar group B(1,2) = �a, t�tat−1 = a2� is an HNN of the infinite cyclic
group �a� with stable letter t.

4. The splitting of a closed orientable surface over simple closed curves into pairs of pants.

5. The free splittings, i.e., splittings with trivial edge groups, of the free group F (a, b)
in Figure 3.

Theorem 2.23. A finitely generated group splits if and only if it acts on a tree without a
global fixed point.

Proof. @
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