
3 Splittings of two-dimensional complexes

In the previous section we saw how one can start with a splitting of a space, and obtain
a splitting of its fundamental group. We also saw how one can start with a splitting of a
group G, and construct a space whose fundamental group is G which has a corresponding
splitting.

What we often want is to find a splitting of a given space X from a splitting of its
fundamental group. Patterns are exactly the tool for the job. Unfortunately we will have to
pay a small price – it will not induce the same splitting of ⇡1(X) but some other splitting
with similar properties.

In this section we only treat the case of patterns on two-dimensional complexes. Later,
we will see how to use similar ideas to tackle 3-manifolds.

3.1 Patterns and tracks

Assume throughout this section that X is a 2-dimensional simplicial complex.

Definition 3.1. A pattern in X is an embedded graph A ⊂X such that:

• the vertices of A lie in the interior of edges of A,

• the interior of edges of A are straight lines in the interior of 2-simplices of X,

• for every 2-simplex � of X and every vertex v of A on @�, there exists a unique edge
of A in � which is incident to v.

A track is a connected (component of a) pattern.

Example 3.2. 1. Let X be a graph, then a finite collection of points A in the interior
of its edges is a pattern.

2. If X is a triangulated surface, then any finite disjoint collection of simple closed curves
(and proper arcs) on X which avoid the vertices of the triangulation is (isotopic) a
pattern.

3. More generally a pattern looks something like Figure 4. Note that by condition 3, the
each track of the pattern must continue into every 2-simplex it meets.

Figure 4: An example of a straight pattern on a 2-dimensional simplicial complex.
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Definition 3.3. Let ⌃,⌃′ be (abstract) simplicial complexes. A simplicial map is a map
f ∶ ⌃0 → ⌃′0 such that if � ∈ ⌃ then f(�) ∈ ⌃′.

Note that a simplicial map might send a simplex to a simplex of lower dimension. Also
note that a simplicial map induces a continuous map between the realizations �⌃�→ �⌃′�. As
usual we will say that the map f between the realizations is simplicial if it is induced from
a simplicial map.

Observation 3.4. If X,Y are 2-dimensional simplicial complexes, A is a pattern on X,
and f ∶ Y →X is a simplicial map then the preimage B = f−1A is pattern on Y .

Exercise 3.5. Let A be a pattern on X, then we define ↵A ∶ X1 → Z≥0 by ↵A(e) = �A ∩ e�
for every edge e ∈X1.

1. Show that for a function ↵ ∶X1 → Z≥0 the following are equivalent:

• ↵ = ↵A for a (unique) pattern A.

• the function ↵ satisfies that for every 2-simplex � in X with sides e1, e2, e3 there
existsm� ∈ Z≥0 for which f(e1)+f(e2)+f(e3) = 2m� and f(ei) ≤m� for i = 1,2,3.

Deduce that ↵A mod 2 is a 1-cocyle, i.e. in Z
1(X).

2. Show that a track ⌧ separates X if and only if ↵⌧ ∈ B1(X).
Definition 3.6. We can now define addition A +B of the patterns A,B to be the unique
pattern which satisfies ↵A+B = ↵A + ↵B .

@ Examples

3.2 Fiber bundles

Definition 3.7 (Fiber bundle). Let F,E,B be topological spaces, we say that f ∶ E → B

is an F -bundle over B, if for every x ∈ B there exists an open neighborhood x ∈ U ⊆ B such
that V = f−1(U) is homeomorphic to F ×U such that the map f �V is the projection on the
second coordinate. In this case B is called the base, and F is called the fiber.

Example 3.8. The projection F ×B → B is an F -bundle over B. Such a bundle is called
trivial.

Exercise 3.9. 1. Show that a cover of X of degree k ∈ N ∪ {∞} is a {1, . . . , k}-bundle
over X.

2. Show that there are exactly two I-bundles (interval bundles) over S1: the trivial bundle
(i.e, the annulus S1 × I), and the Möbius band. In general I-bundles are characterized
by H

1(B), why?
3. Explain why a pattern A has a neighborhood N (A) which avoids the vertices of X

and is a (−1,1)-bundle over A such that A corresponds to {0} ×A.

Remark 3.10. Exercise 3.9.2 can be generalized to show that the F -bundles over S1 are clas-
sified by conjugacy classes of the elements of Homeo(F )�Homeo0(F ) where Homeo0(F ) is
the isotopy group, i.e., the identity component of the topological group of self-homeomorphisms
Homeo(F ). In particular, there are two Dn-bundles over S1.
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Definition 3.11 (tubular neighborhood of pattern). We will refer to such a neighborhoodN (A) (as in Exercise 3.9.3) as a tubular neighborhood of A.

Remark 3.12. One can define patterns for more general topological spaces. A pattern in
a topological space X is a closed subset A ⊂ X which has an open neighborhood U in X

which is a (−1,1)-bundle over A such that A corresponds to {0} ×A. With this definition
one can prove similar results, however this will not be needed for our purposes

Definition 3.13. A track ⌧ is one-sided (resp. two-sided) if N (⌧) − ⌧ is connected (resp.
has two components). We will call a pattern 2-sided if all of its tracks are 2-sided.

Exercise 3.14. Show that N (⌧) − ⌧ has at most 2 connected components, and

• if ⌧ is 1-sided, then ⇡1(N (⌧) − ⌧) has index 2 in ⇡1(N (⌧)) = ⇡1(⌧).
• if ⌧ is 2-sided then N (⌧) = ⌧ × (−1,1) is the trivial bundle.

Exercise 3.15. If A is a 2-sided pattern on X then X splits over the tracks of the pattern.

Exercise 3.16. If ⌧1, . . . , ⌧n are disjoint one-sided tracks, then the corresponding cocycles
↵1, . . . ,↵n are independent vectors in H

1(X).
Remark 3.17. By tweaking the definition of a graph to allow ē = e. One can define a
dual graph also for patterns which are not 2-sided. However, this is not really necessary, as
whenever we have a 1-sided tracks, the boundary of a small tubular neighborhood around
it 2-sided.

3.3 @ From actions on trees to patterns

Let G be the fundamental group of a simplicial complex X. Let G� X̃ be the action of G
on the universal cover of X by deck transformations. Let T be a tree, and let G� T be an
action without inversions.

We build a G-equivariant map X̃ → T by defining it on vertices, edges and 2-simplices.
This map will (most likely) not be simplicial but will be piecewise linear – i.e., it will be
simplicial once we subdivide X̃ enough. Don’t worry, we will come back to this notion later
on, when we talk about 3-manifolds.

Vertices: Choose orbit representatives x1, . . . , xn for the action of G on the vertices of
X̃, and arbitrary vertices v1, . . . , vn ∈ T . Now, define the map f on x1, . . . , xn by f(xi) = vi.
Extend it to all vertices G-equivariantly by f(gxi) = gvi. This is well-defined because the
action G� X̃ is free.

Edges: Now for each edge e ⊂ X̃, let f map e linearly to the geodesic connecting f(o(e))
and f(t(e)).

2-Simplices: For each 2-simplex �, f(@�) is a tripod (see Figure 5), and one can extend
the map f to � by dividing it into 4 simplices and mapping them linearly so that the middle
is sent to the vertex at the “middle” of the tripod.

If M is the pattern on T which is the collection of midpoints of edges of T (shown in
dark green in Figure 5), then Ãf = f−1(M) is a pattern on X̃ which is G invariant. Hence it
defines a pattern Af on X. This pattern is 2-sided because the action is without inversions,
and so we get a splitting of X. Moreover, there is a G-equivariant map F ∶ TÃf

→ T where

TÃf
is the tree dual to Ãf .
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Figure 5: The map f ∶ X̃ → T and the pattern Ãf .

3.4 @ Bounding the number of tracks

Definition 3.18. Two tracks ⌧−, ⌧+ are parallel, if there exists a 2-sided track ⌧ and a
neighborhood N (⌧) = ⌧ × (−1,1) such that ⌧ × {±1�2} = ⌧±.

In other words, the two tracks are 2-sided and the region between them is a product
that does not pass through vertices.

Theorem 3.19 (Kneser’s Bound). If X is a finite 2-dimensional simplicial complex then
there exists (X) ≥ 0, such that if A is a straight pattern on X with more than (X) tracks
then A contains two parallel tracks.

Proof. @

We summarize the discussion above in the following theorem

Theorem 3.20. Let G = ⇡1(X) then there exists (X), such that for every action G � T

without inversions, there exists a tree T
′ which is dual to some pattern in X̃ and a G-

equivariant PL map T
′ → T , so that T ′�G has at most (X) edges. Moreover, the edge and

vertex stabilizers of G� T
′ are finitely generated.

@ Why do we care about such a theorem?
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