3 Splittings of two-dimensional complexes

In the previous section we saw how one can start with a splitting of a space, and obtain a splitting of its fundamental group. We also saw how one can start with a splitting of a group G, and construct a space whose fundamental group is G which has a corresponding splitting.

What we often want is to find a splitting of a given space X from a splitting of its fundamental group. Patterns are exactly the tool for the job. Unfortunately we will have to pay a small price - it will not induce the same splitting of $\pi_{1}(X)$ but some other splitting with similar properties.

In this section we only treat the case of patterns on two-dimensional complexes. Later, we will see how to use similar ideas to tackle 3 -manifolds.

3.1 Patterns and tracks

Assume throughout this section that X is a 2 -dimensional simplicial complex.
Definition 3.1. A pattern in X is an embedded graph $A \subset X$ such that:

- the vertices of A lie in the interior of edges of A,
- the interior of edges of A are straight lines in the interior of 2-simplices of X,
- for every 2-simplex σ of X and every vertex v of A on $\partial \sigma$, there exists a unique edge of A in σ which is incident to v.

A track is a connected (component of a) pattern.
Example 3.2. 1. Let X be a graph, then a finite collection of points A in the interior of its edges is a pattern.
2. If X is a triangulated surface, then any finite disjoint collection of simple closed curves (and proper arcs) on X which avoid the vertices of the triangulation is (isotopic) a pattern.
3. More generally a pattern looks something like Figure 4 Note that by condition 3, the each track of the pattern must continue into every 2 -simplex it meets.

Figure 4: An example of a straight pattern on a 2-dimensional simplicial complex.

Definition 3.3. Let Σ, Σ^{\prime} be (abstract) simplicial complexes. A simplicial map is a map $f: \Sigma^{0} \rightarrow \Sigma^{\prime 0}$ such that if $\sigma \in \Sigma$ then $f(\sigma) \in \Sigma^{\prime}$.

Note that a simplicial map might send a simplex to a simplex of lower dimension. Also note that a simplicial map induces a continuous map between the realizations $|\Sigma| \rightarrow\left|\Sigma^{\prime}\right|$. As usual we will say that the map f between the realizations is simplicial if it is induced from a simplicial map.

Observation 3.4. If X, Y are 2-dimensional simplicial complexes, A is a pattern on X, and $f: Y \rightarrow X$ is a simplicial map then the preimage $B=f^{-1} A$ is pattern on Y.

Exercise 3.5. Let A be a pattern on X, then we define $\alpha_{A}: X^{1} \rightarrow \mathbb{Z}_{\geq 0}$ by $\alpha_{A}(e)=|A \cap e|$ for every edge $e \in X^{1}$.

1. Show that for a function $\alpha: X^{1} \rightarrow \mathbb{Z}_{\geq 0}$ the following are equivalent:

- $\alpha=\alpha_{A}$ for a (unique) pattern A.
- the function α satisfies that for every 2-simplex σ in X with sides e_{1}, e_{2}, e_{3} there exists $m_{\sigma} \in \mathbb{Z}_{\geq 0}$ for which $f\left(e_{1}\right)+f\left(e_{2}\right)+f\left(e_{3}\right)=2 m_{\sigma}$ and $f\left(e_{i}\right) \leq m_{\sigma}$ for $i=1,2,3$.
Deduce that $\alpha_{A} \bmod 2$ is a 1-cocyle, i.e. in $Z^{1}(X)$.

2. Show that a track τ separates X if and only if $\alpha_{\tau} \in B^{1}(X)$.

Definition 3.6. We can now define addition $A+B$ of the patterns A, B to be the unique pattern which satisfies $\alpha_{A+B}=\alpha_{A}+\alpha_{B}$.
@ Examples

3.2 Fiber bundles

Definition 3.7 (Fiber bundle). Let F, E, B be topological spaces, we say that $f: E \rightarrow B$ is an F-bundle over B, if for every $x \in B$ there exists an open neighborhood $x \in U \subseteq B$ such that $V=f^{-1}(U)$ is homeomorphic to $F \times U$ such that the map $\left.f\right|_{V}$ is the projection on the second coordinate. In this case B is called the base, and F is called the fiber.

Example 3.8. The projection $F \times B \rightarrow B$ is an F-bundle over B. Such a bundle is called trivial.

Exercise 3.9. 1. Show that a cover of X of degree $k \in \mathbb{N} \cup\{\infty\}$ is a $\{1, \ldots, k\}$-bundle over X.
2. Show that there are exactly two I-bundles (interval bundles) over \mathbb{S}^{1} : the trivial bundle (i.e, the annulus $\mathbb{S}^{1} \times I$), and the Möbius band. In general I-bundles are characterized by $H^{1}(B)$, why?
3. Explain why a pattern A has a neighborhood $\mathcal{N}(A)$ which avoids the vertices of X and is a $(-1,1)$-bundle over A such that A corresponds to $\{0\} \times A$.

Remark 3.10. Exercise 3.9 . 2 can be generalized to show that the F-bundles over \mathbb{S}^{1} are classified by conjugacy classes of the elements of $\operatorname{Homeo}(F) / \operatorname{Homeo}_{0}(F)$ where $\operatorname{Homeo}_{0}(F)$ is the isotopy group, i.e., the identity component of the topological group of self-homeomorphisms $\operatorname{Homeo}(F)$. In particular, there are two \mathbb{D}^{n}-bundles over \mathbb{S}^{1}.

Definition 3.11 (tubular neighborhood of pattern). We will refer to such a neighborhood $\mathcal{N}(A)$ (as in Exercise 3.93) as a tubular neighborhood of A.

Remark 3.12. One can define patterns for more general topological spaces. A pattern in a topological space X is a closed subset $A \subset X$ which has an open neighborhood U in X which is a $(-1,1)$-bundle over A such that A corresponds to $\{0\} \times A$. With this definition one can prove similar results, however this will not be needed for our purposes

Definition 3.13. A track τ is one-sided (resp. two-sided) if $\mathcal{N}(\tau)-\tau$ is connected (resp. has two components). We will call a pattern 2-sided if all of its tracks are 2 -sided.

Exercise 3.14. Show that $\mathcal{N}(\tau)-\tau$ has at most 2 connected components, and

- if τ is 1-sided, then $\pi_{1}(\mathcal{N}(\tau)-\tau)$ has index 2 in $\pi_{1}(\mathcal{N}(\tau))=\pi_{1}(\tau)$.
- if τ is 2-sided then $\mathcal{N}(\tau)=\tau \times(-1,1)$ is the trivial bundle.

Exercise 3.15. If A is a 2-sided pattern on X then X splits over the tracks of the pattern.
Exercise 3.16. If $\tau_{1}, \ldots, \tau_{n}$ are disjoint one-sided tracks, then the corresponding cocycles $\alpha_{1}, \ldots, \alpha_{n}$ are independent vectors in $H^{1}(X)$.
Remark 3.17. By tweaking the definition of a graph to allow $\bar{e}=e$. One can define a dual graph also for patterns which are not 2 -sided. However, this is not really necessary, as whenever we have a 1-sided tracks, the boundary of a small tubular neighborhood around it 2 -sided.

$3.3 @$ From actions on trees to patterns

Let G be the fundamental group of a simplicial complex X. Let $G \curvearrowright \widetilde{X}$ be the action of G on the universal cover of X by deck transformations. Let T be a tree, and let $G \curvearrowright T$ be an action without inversions.

We build a G-equivariant map $\widetilde{X} \rightarrow T$ by defining it on vertices, edges and 2 -simplices. This map will (most likely) not be simplicial but will be piecewise linear - i.e., it will be simplicial once we subdivide \widetilde{X} enough. Don't worry, we will come back to this notion later on, when we talk about 3 -manifolds.

Vertices: Choose orbit representatives x_{1}, \ldots, x_{n} for the action of G on the vertices of \widetilde{X}, and arbitrary vertices $v_{1}, \ldots, v_{n} \in T$. Now, define the map f on x_{1}, \ldots, x_{n} by $f\left(x_{i}\right)=v_{i}$. Extend it to all vertices G-equivariantly by $f\left(g x_{i}\right)=g v_{i}$. This is well-defined because the action $G \frown \widetilde{X}$ is free.

Edges: Now for each edge $e \subset \widetilde{X}$, let f map e linearly to the geodesic connecting $f(o(e))$ and $\overline{f(t(e)})$.

2-Simplices: For each 2-simplex $\sigma, f(\partial \sigma)$ is a tripod (see Figure 5), and one can extend the map f to σ by dividing it into 4 simplices and mapping them linearly so that the middle is sent to the vertex at the "middle" of the tripod.

If M is the pattern on T which is the collection of midpoints of edges of T (shown in dark green in Figure 5 , then $\widetilde{A}_{f}=f^{-1}(M)$ is a pattern on \widetilde{X} which is G invariant. Hence it defines a pattern A_{f} on X. This pattern is 2 -sided because the action is without inversions, and so we get a splitting of X. Moreover, there is a G-equivariant map $F: T_{\widetilde{A}_{f}} \rightarrow T$ where $T_{\widetilde{A}_{f}}$ is the tree dual to \widetilde{A}_{f}.

Figure 5: The map $f: \widetilde{X} \rightarrow T$ and the pattern \widetilde{A}_{f}.

3.4@ Bounding the number of tracks

Definition 3.18. Two tracks τ_{-}, τ_{+}are parallel, if there exists a 2 -sided track τ and a neighborhood $\mathcal{N}(\tau)=\tau \times(-1,1)$ such that $\tau \times\{ \pm 1 / 2\}=\tau_{ \pm}$.

In other words, the two tracks are 2 -sided and the region between them is a product that does not pass through vertices.

Theorem 3.19 (Kneser's Bound). If X is a finite 2-dimensional simplicial complex then there exists $\kappa(X) \geq 0$, such that if A is a straight pattern on X with more than $\kappa(X)$ tracks then A contains two parallel tracks.

Proof. @
We summarize the discussion above in the following theorem
Theorem 3.20. Let $G=\pi_{1}(X)$ then there exists $\kappa(X)$, such that for every action $G \curvearrowright T$ without inversions, there exists a tree T^{\prime} which is dual to some pattern in \widetilde{X} and a Gequivariant PL map $T^{\prime} \rightarrow T$, so that T^{\prime} / G has at most $\kappa(X)$ edges. Moreover, the edge and vertex stabilizers of $G \frown T^{\prime}$ are finitely generated.
@ Why do we care about such a theorem?

