
6 Heegaard Splitting

We will first show that every (!!!) compact 3-manifold can be decomposed into two handle-
bodies (see below) along a surface. This will have immediate consequences on ⇡1(M), but
is not at all canonical like the splittings that will follow.

Definition 6.1. A handlebody H is a 3-manifold (with boundary) that has a splitting with
one vertex space which is a 3-ball D3, and whose edge spaces are proper disks D2 so that
the attaching maps are embeddings D2 � @D3 with disjoint image. The number of edges is
the number of handles (or the genus of the handlebody). See Figure 7.

Figure 7: The oriented and unoriented handlebodies

Remark 6.2. Note that the genus of the handlebody is the genus g(@H) of @H, where the
genus of a closed (orientable or non-orientable) surface F is defined by g(F ) = 1 − 1

2�(F ).
Exercise 6.3. Show that up to homeomorphism a handlebody is determined by its genus
and orientation.

Exercise 6.4. Show that if S is a surface with boundary, then S × I is a handlebody, and
S × I is orientable if and only if S is.

Definition 6.5. A Heegaard splitting of a closed 3-manifold, is a splitting along a surface S
into two handlebodies. In other words, there are two handlebodies H1,H2 in M embedded
in M so that M =H1 ∪H2 and @H1 = @H2 =H1 ∩H2.

Exercise 6.6. Show that every 3-manifold (with boundary) which has a splitting along
proper disks into 3-balls is a handlebody.

Exercise 6.7. Show that every 3-manifold has a Heegaard splitting. Moreover, show that
the manifold is orientable if and only if each of the handlebodies is. Hint: Let ⌃ be a
triangulation of M , consider the neighborhoods of the 1-skeleton of ⌃, and the 1-skeleton
of ⌃⊥.
Exercise 6.8. Find a Heegaard splitting of S3 for each genus g.

Fing a Heegaard splitting of P3.

@ Heegaard diagram

Exercise 6.9. Assume M is a closed (say, orientable) 3-manifold, and M = H1 ∪H2 is a
Heegaard splitting and each ofHi has n-handles. Show that its fundamental group has a bal-
anced presentation, i.e., a presentation ⇡1(M) = �x1, . . . , xn � r1, . . . , rn� where the number
of generators equals the number of relations.
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The last exercise shows for example that Zn for n ≥ 4 and (C2)m for m ≥ 2 cannot be
the fundamental group of a closed 3-manifold. (Compare this to the fact that every finitely
presented group is the fundamental of a closed 4-manifold)

The Heegaard splitting has two major flaws: it is not canonical, and it is not ⇡1-injective.
@ Alexander’s and Waldhausen’s Theorem.
@ Reidemeister-Singer Theorem.
@ Poincaré Conjecture.

6.1 Lens space

Definition 6.10. A lens space is a 3-manifold with a Heegaard splitting over the torus.

Exercise 6.11. For every p, q such that gcd(p, q) = 1 The space L(p, q) is obtained by taking
the quotient of S3 ⊂ C2 by the cyclic group of order p generated by the isometry (x, y) �(e2⇡i�px, e2⇡iq�py). Show that the space L(p, q) is a lens space, and that its fundamental
group is cyclic of order p.

@ What is the Heegaard diagram of L(p, q)?
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