
5 The basics of 3-manifolds

5.1 Piecewise-Linear structure

Definition 5.1. A topological n-manifold (with boundary) is a Hausdor↵ second-countable
space M which is locally homeomorphic to open subsets of Rn−1 × [0,∞).

The boundary @M ofM are those points inM which are sent to Rn−1×{0} ⊂ Rn−1×[0,∞)
under the local homeomorphisms. A manifold is closed if it is compact and @M = �.
Observation 5.2. The boundary @M is an (n−1)-manifold without boundary (i.e., @(@M) =�).
Example 5.3. Some basic examples and constructions of 3-manifolds:

• The 3-sphere S3 = {v ∈ R4� �v� = 1}; the 3-ball D3 = {v ∈ R3� �v� ≤ 1}; the 3-torus
T3 = (S1)3.

• The real projective 3-space:

P3 = (R4 − 0) � ∀� ≠ 0, x ∼ �x
= S3 � x ∼ −x
= D3 � ∀x ∈ @D3

, x ∼ −x.
• Products F ×S1 or F × [0,1] where F is a surface. For example, the full torus D2 ×S1
is a 3-manifold with torus boundary.

• More generally, surface-bundles over S1. As we saw, such a bundle can be described
as the mapping torus of a homeomorphism � ∶ F → F of a surface F , i.e. as the space

M� = F × [0,1] � ∀x ∈ F, (x,1) ∼ (�(x),0).
Manifolds are in general quite wild objects, but it turns out that in dimension ≤ 3, they

are more tame. In particular, they have a unique smooth structure (@ in class) and a unique
piecewise linear structure (defined below).

Definition 5.4. Let ⌃ be a simplicial complex. A subdivision of ⌃ is a simplicial complex
⌃′ such that �⌃� ≅ �⌃′� and each simplex of ⌃′ is contained in a simplex of ⌃. See Figure 6.

Figure 6: The simplex on the left is subdivided on the right

A map f ∶ �⌃�→ �⇤� is piecewise linear (PL) if there exist subdivisions ⌃′,⇤′ of ⌃,⇤ such
that f is the realization of a simplicial map ⌃′ → ⇤′.

A triangulation of a space X is a pair (⌃, h) of a simplicial complex ⌃ and a home-
omorphism h ∶ �⌃� → X. Two triangulations (⌃1, h1), (⌃2, h2) are compatible if h−12 h1 is
PL.

A PL structure on a 3-manifold is a (compatibility class of) triangulations.
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Fact 5.5. There is a unique PL structure on a 3-manifold up to PL homeomorphism.

@ The actual definition of a PL structure for n-manifolds will be discussed in class.

Definition 5.6. A PL submanifold N of a PL manifold M , is a subcomplex ⇤ of a trian-
gulation (⌃, h) of M such that (⇤, h��⇤�) is a triangulation of the manifold N .

A submanifold is proper is @N = @M ∩N .

Fact 5.7. Every proper PL compact m-submanifold N of a 3-manifold M has a tubular
neighborhood. I.e., an open neighborhood which is an R3−m-bundle over N .

@ Why PL submanifolds and not to subspaces which are manifolds?

Example 5.8 (Knots, links and their complements). A PL submanifold K ≅ S1 (more
generally, L ≅ S1� . . .�S1) in S3 is called a knot (resp. a link). Every knot (resp. ink) has
a tubular neighborhood N (K) which is a full torus (resp. a disjoint collection of full tori).
Removing it from S3 we get one of the most important sources for 3-manifolds with torus
boundaries: knot (and link) complements.

Example 5.9 (Dehn surgery). Let L be a link in S3. Consider the link complement M =
S3 − N (L), and to each torus boundary component glue back a solid torus but using a
di↵erent identification of its boundary. This is called Dehn surgery. It is a theorem of
Lickorish-Wallace that every closed 3-manifold can be obtained in this way!

5.2 Orientation

Definition 5.10. We will say that two ordering of the vertices of a simplex are equivalent
if they di↵er by an even permutation, that is (v0, . . . , vn) ∼ (v⇡(0), . . . , v⇡(n)) for every
⇡ ∈ An+1 (the alternating subgroup of Sn+1). An oriented n-simplex [v0, . . . , vn] is one of
the two equivalence classes of ordering of the vertices up to the alternating group. The other
orientation will be denoted by −[v0, . . . , vn]. So that [v0, . . . , vn] = sgn(⇡)[v⇡(0), . . . , v⇡(n)]
for all ⇡ ∈ Sn.

Let � = [v0, . . . , vn] be an oriented simplex. For every (n− 1)-face ⌧ of � the orientation
of ⌧ induced by � is (−1)i[v0, . . . , vi−1, vi+1, . . . , vn].

We say that a PL n-manifold M is oriented if there is an orientation on each simplex
such that for all (n−1)-simplex ⌧ the orientation induced by each of its incident n-simplexes
are opposite.

Remark 5.11. Now that we have defined orientation of simplices, we can actually define
the simplicial homology with Z coe�cients. The chains are the Z-span of oriented simplices,
where we mod out the relation (−1) ⋅ � = −�, i.e., the simplex with the reverse orientation.
The boundary map @ is defined on an oriented simplex � to be @� = ∑ ⌧ where the sum
ranges over the faces ⌧ of � with the induced orientation.

Note, that this definition shows that a closed manifold has an orientation if and only if
Hn(M ;Z) � Z. Therefore, being orientable is actually a property of the manifold and not
the specific triangulation.

Exercise 5.12. Show that every non-orientable PL n-manifold M has a double cover which
is orientable.

Exercise 5.13. • Is P3 orientable?
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• Is every PL submanifold of an oriented (PL) 3-manifold oriented?

Exercise 5.14. Show that the boundary of an orientable manifold is orientable. What
about non-orientable manifolds?

Recall that an R2-bundle over a S1 are characterized by the mapping class group of R2.
The mapping class group of R2 has two elements the orientation preserving and reversing
classes. So a R2-bundle over S1 is either trivial or twisted.

Exercise 5.15. The manifold M is orientable if the tubular neighborhood of any simple
closed curve is a trivial bundle.

@ What is the relation between the orientability of a manifold M , the orientability of a
submanifold N and its tubular neighborhood?

5.3 Poincaré Duality

Theorem 5.16 (Poincaré Duality). Let M be closed connected n-manifold. Then for all k,
H

n−k(M) �Hk(M).
“Proof”. Let us show for a 3-manifold that H1(M) � H2(M). Consider a triangulation ⌃
of M . First, construct the dual complex ⌃⊥ as follows: Place a vertex in the interior of each
3-cell, connect two such vertices by an edge if the 3-cells share a 2-cell face. Next, around
every edge of ⌃ there are some number of 3-cells cyclically connected, in the dual graph(⌃⊥)(1) we have built so far there is a corresponding circle, attach the boundary of a 2-disk
to this circle. Finally, around every vertex we have constructed a polygonal complex of a
sphere S2, fill the sphere with a 3-ball.

Instead of the homologies Hk(M) = Hk(⌃) for the original simplicial complex, one can
consider the homologies Hk(⌃⊥) of the dual complex. Even though it is not a simplicial
complex anymore, the definition is basically the same, and one has Hk(M) = Hk(⌃⊥) =
Hk(⌃). So it su�ces to show that H1(⌃⊥) �H2(⌃):
Exercise 5.17. Consider the map c ∈ H1(⌃⊥) � ↵c ∈ H2(⌃) defined by ↵c(�) = �� ∩ c� for
every � ∈ ⌃2. Show that it is a well-defined isomorphism.

Those who are familiar with the Poincaré Duality Theorem, might find that the above
statement is missing the assumption of orientability. The reason that this assumption is not
needed, is that the (co)homologies are defined over F2. With a little more care, the “proof”
above can be turned into a proof of the usual formulation of the Poincaré Duality Theorem:

Theorem 5.18 (Poincaré Duality). Let M be a closed connected orientable n-manifold.
Then for all k, Hn−k(M ;Z) �Hk(M ;Z).
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