
7 Connected sums and prime decomposition

Definition 7.1. Let M1,M2 be two 3-manifolds (possibly with boundary). A manifold M

is a connected sum of M1 and M2, denoted M1#M2, if there exists embedded closed balls
Bi ⊂ int(Mi) and embeddings hi ∶ Mi − int(Bi) → M such that imh1 ∩ imh2 = h1(@B1) =
h2(@B2). In other words, M is obtained by gluing M1 − int(B1) to M2 − int(B2) along @Bi.
If M1,M2 are oriented, we require the connected sum to have the orientation of M1 and
M2. I.e. the gluing of @B1 to @B2 reverses the induced orientation.

Fact 7.2. The connected sum is not well-defined. However the only disambiguity is in the
‘orientation’ of the gluing of @B1 to @B2 (and not in any of the other choice). If M1,M2

are oriented, then M1#M2 is well-defined, and is associative and commutative.

Definition 7.3. A 3-manifold M is prime if M �≅ S3 and whenever M = M1#M2 then
M1 = S3 or M2 = S3.
Observation 7.4. If M =M1#M2 then ⇡1(M) = ⇡1(M1)∗⇡1(M2). Under the assumption
of the Poincaré Conjecture, if M is not prime then ⇡1(M) has a non-trivial as a free product.

Exercise 7.5. Use the observation above and Alexander’s Theorem to show that:

• D3 is prime.

• S2−bundles over S1 are prime.

• The Lens spaces L(p, q) are prime.

[Hint: if they are not, M = (M1 −B1)∪ (M2 −B2) glued along a sphere, by the observation
one of them must be simply connected. Without loss of generality, ⇡1(M1 −B1) = 1. Lift
M1 −B1 to the universal cover and deduce that it is a standard 3-ball.]

Our goal is the following decomposition theorem:

Theorem 7.6 (Prime decomposition - existence). Let M be a compact 3-manifold, then
there exists a decomposition M =M1#�#Mn such that each Mi is prime.

Assuming the Poincaré conjecture (which is now a theorem), the prime decomposition
theorem is a consequence of Grushko’s decomposition. That said, we will give a proof that
does not depend on the Poincaré conjecture.

It would be useful to not worry about sphere boundary components, as those are spheres
which are not 2-sided. For this purpose, we define define the capping of a manifold.

Definition 7.7. Let M be a compact 3-manifold. Denote by M̂ the manifold obtained by
gluing a 3-ball to each sphere boundary component.

Exercise 7.8. IfM is a compact manifold, and M̂ =M1# . . .#Mn is a prime decomposition
of M̂ , then M =M1# . . .#Mn#B1# . . .Bk is a prime decomposition for M such that k is
the number of sphere boundary components and Bi are 3-balls.

Definition 7.9. A 3-manifold M is irreducible if M �≅ S3 and every embedded 2-sphere
bounds a 3-ball.

Exercise 7.10. • Suppose M is a 3-manifold such that int(M) contains a sphere S

such that M − S is connected. Then M =M1#M2 where M1 is a S2-bundle over S1.
[Hint: consider a small neighborhood of S together with an arc connecting its two
sides.]
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• Show that every irreducible manifold is prime, and deduce that the only non-irreducible
prime manifolds are S2-bundles over S1.

Proof of Theorem 7.6. @

Exercise 7.11. If M =M1#(S2 × S1) and M1 is non-orientable then M =M1#P where P

is the non-orientable S2-bundle over S1. [Hint: use the same hint as in the previous exercise
to show M =M ′

1#P . Show that M̂1 = M̂ ′
1 = (M −N (S))̂ .]

Definition 7.12. A prime decomposition M = M1# . . .#Mn is normal if either M is
orientable or M is non-orientable and none of the Mi is homeomorphic to S2 × S1 �⇒ .

Theorem 7.13 (Prime decomposition - uniqueness). Let M =M1# . . .#Mn =M ′
1# . . .#M

′
n′

are two normal prime decompositions of M , then n = n′ and up to reordering Mi ≅M ′
i .

Proof. @
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