7 Connected sums and prime decomposition

Definition 7.1. Let M_{1}, M_{2} be two 3-manifolds (possibly with boundary). A manifold M is a connected sum of M_{1} and M_{2}, denoted $M_{1} \# M_{2}$, if there exists embedded closed balls $B_{i} \subset \operatorname{int}\left(M_{i}\right)$ and embeddings $h_{i}: M_{i}-\operatorname{int}\left(B_{i}\right) \rightarrow M$ such that $\operatorname{im} h_{1} \cap \operatorname{im} h_{2}=h_{1}\left(\partial B_{1}\right)=$ $h_{2}\left(\partial B_{2}\right)$. In other words, M is obtained by gluing $M_{1}-\operatorname{int}\left(B_{1}\right)$ to $M_{2}-\operatorname{int}\left(B_{2}\right)$ along ∂B_{i}. If M_{1}, M_{2} are oriented, we require the connected sum to have the orientation of M_{1} and M_{2}. I.e. the gluing of ∂B_{1} to ∂B_{2} reverses the induced orientation.
Fact 7.2. The connected sum is not well-defined. However the only disambiguity is in the 'orientation' of the gluing of ∂B_{1} to ∂B_{2} (and not in any of the other choice). If M_{1}, M_{2} are oriented, then $M_{1} \# M_{2}$ is well-defined, and is associative and commutative.
Definition 7.3. A 3-manifold M is prime if $M \not \approx \mathbb{S}^{3}$ and whenever $M=M_{1} \# M_{2}$ then $M_{1}=\mathbb{S}^{3}$ or $M_{2}=\mathbb{S}^{3}$.

Observation 7.4. If $M=M_{1} \# M_{2}$ then $\pi_{1}(M)=\pi_{1}\left(M_{1}\right) * \pi_{1}\left(M_{2}\right)$. Under the assumption of the Poincaré Conjecture, if M is not prime then $\pi_{1}(M)$ has a non-trivial as a free product.
Exercise 7.5. Use the observation above and Alexander's Theorem to show that:

- \mathbb{D}^{3} is prime.
- \mathbb{S}^{2}-bundles over \mathbb{S}^{1} are prime.
- The Lens spaces $L(p, q)$ are prime.
[Hint: if they are not, $M=\left(M_{1}-B_{1}\right) \cup\left(M_{2}-B_{2}\right)$ glued along a sphere, by the observation one of them must be simply connected. Without loss of generality, $\pi_{1}\left(M_{1}-B_{1}\right)=1$. Lift $M_{1}-B_{1}$ to the universal cover and deduce that it is a standard 3-ball.]

Our goal is the following decomposition theorem:
Theorem 7.6 (Prime decomposition - existence). Let M be a compact 3-manifold, then there exists a decomposition $M=M_{1} \# \cdots \# M_{n}$ such that each M_{i} is prime.

Assuming the Poincaré conjecture (which is now a theorem), the prime decomposition theorem is a consequence of Grushko's decomposition. That said, we will give a proof that does not depend on the Poincaré conjecture.

It would be useful to not worry about sphere boundary components, as those are spheres which are not 2 -sided. For this purpose, we define define the capping of a manifold.
Definition 7.7. Let M be a compact 3-manifold. Denote by \hat{M} the manifold obtained by gluing a 3-ball to each sphere boundary component.
Exercise 7.8. If M is a compact manifold, and $\hat{M}=M_{1} \# \ldots \# M_{n}$ is a prime decomposition of \hat{M}, then $M=M_{1} \# \ldots \# M_{n} \# B_{1} \# \ldots B_{k}$ is a prime decomposition for M such that k is the number of sphere boundary components and B_{i} are 3-balls.
Definition 7.9. A 3-manifold M is irreducible if $M \not \approx \mathbb{S}^{3}$ and every embedded 2-sphere bounds a 3-ball.

Exercise 7.10. - Suppose M is a 3-manifold such that $\operatorname{int}(M)$ contains a sphere S such that $M-S$ is connected. Then $M=M_{1} \# M_{2}$ where M_{1} is a \mathbb{S}^{2}-bundle over \mathbb{S}^{1}. [Hint: consider a small neighborhood of S together with an arc connecting its two sides.]

- Show that every irreducible manifold is prime, and deduce that the only non-irreducible prime manifolds are \mathbb{S}^{2}-bundles over \mathbb{S}^{1}.

Proof of Theorem 7.6. @
Exercise 7.11. If $M=M_{1} \#\left(\mathbb{S}^{2} \times \mathbb{S}^{1}\right)$ and M_{1} is non-orientable then $M=M_{1} \# P$ where P is the non-orientable \mathbb{S}^{2}-bundle over \mathbb{S}^{1}. [Hint: use the same hint as in the previous exercise to show $M=M_{1}^{\prime} \# P$. Show that $\hat{M}_{1}=\hat{M}_{1}^{\prime}=(M-\mathcal{N}(S))^{\wedge}$.]

Definition 7.12. A prime decomposition $M=M_{1} \# \ldots \# M_{n}$ is normal if either M is orientable or M is non-orientable and none of the M_{i} is homeomorphic to $\mathbb{S}^{2} \times \mathbb{S}^{1} \Longrightarrow$.

Theorem 7.13 (Prime decomposition - uniqueness). Let $M=M_{1} \# \ldots \# M_{n}=M_{1}^{\prime} \# \ldots \# M_{n^{\prime}}^{\prime}$ are two normal prime decompositions of M, then $n=n^{\prime}$ and up to reordering $M_{i} \cong M_{i}^{\prime}$.

Proof. @

