8 Dehn's Lemma, the Loop and Sphere Theorems

The following 3 theorems are perhaps among the most important basic theorems in 3 manifold topology. What they all have in common is that we assume the existence of some ("non-trivial") map f from a disk or a sphere into M and we want to turn it into an embedding g (with similar "non-triviality" assumption). The existence of such an embedding is what turns many (algebraic/homotopic) properties of 3-manifolds into combinatorial/topological ones.

Theorem 8.1 (Dehn's Lemma, Papakyriakopoulos). Let M be a 3-manifold, and let f : $\mathbb{D}^{2} \rightarrow M$ be a map which is injective on a small neighborhood U of $\partial \mathbb{D}^{2}$ and such that $f^{-1} f(U)=U$, then there exists an embedding $g: \mathbb{D}^{2} \rightarrow M$ such that $\left.g\right|_{\partial \mathbb{D}^{2}}=\left.f\right|_{\partial \mathbb{D}^{2}}$.

Theorem 8.2 (The Loop Theorem). Let M be a 3-manifold and $F \subset \partial M$ a connected sub-surface. If $\pi_{1}(F) \rightarrow \pi_{1}(M)$ is not injective then, there exists an embedding $g: \mathbb{D}^{2} \leftrightarrow M$ such that $\left.g\right|_{\partial \mathbb{D}^{2}}$ is a non-trivial element in $\pi_{1}(F)$.

Theorem 8.3 (The Sphere Theorem). Let M be an orientable 3-manifold, if $f: \mathbb{S}^{2} \rightarrow M$ is continuous and cannot be extended continuously to $\mathbb{D}^{3} \rightarrow M$ then there exists an embedding $g: \mathbb{S}^{2} \hookrightarrow M$ with the same property. In particular, M is reducible.
@ $\pi_{n}(X)$, and stronger formulations of the theorems.
Exercise 8.4. Deduce Dehn's lemma from the loop theorem. [Hint: remove a small regular neighborhood of $f\left(\partial \mathbb{D}^{2}\right)$ and apply the loop theorem.]
Exercise 8.5. Deduce the following: Let $F \subset M$ be a 2-sided embedded surface, then if F is not π_{1}-injective, then there exists an essential simple closed curve in F (i.e., a simple closed curve that does not bound a disk in F) which bounds a disk D in M such that $D \cap F=\partial D$. [Hint: Let $f:\left(\mathbb{D}^{2}, \partial \mathbb{D}^{2}\right) \rightarrow(M, F)$ be in general position to F, show that $f^{-1}(F)$ is a collection of simple closed curves, take an innermost curve $c \subset f^{-1}(F)$, show that either $f(c)$ is inessential in F in which case the number of components of $f^{-1}(F)$ can be reduced or using the loop theorem one gets the desired curve.]

For the proof of the loop theorem the main idea is to start with a map $f: \mathbb{D}^{2} \rightarrow M$ which is in general position (see below). Such a map will have singularities - i.e., points where its image intersects itself. The idea is to try to replace f by a new map which has less singularities until all are gone and we get an embedding. This is done using two tools: 'cut and paste techniques', and a 'tower construction'.

8.1 Singularities of maps

Let F be a compact surface, M a 3-manifold. Let $f:(F, \partial F) \rightarrow(M, \partial M)$ be a PL map. Define $S(f) \subset F$ to be the closure of points $x \in F$ such that $\#\left(f^{-1} f(x)\right)>1$. Define

$$
S_{i}(f)=\left\{x \in S(f) \mid \#\left(f^{-1}(f(x))\right)=i\right\}, \text { and } \Sigma_{i}(f)=f\left(S_{i}(f)\right)
$$

Note that $S_{1}(f)$ is not necessarily empty.
A map $f: F \rightarrow M$ is in general position if:

1. $S_{1}(f)$ and $S_{3}(f)$ are finite.
2. for all $i \geq 4, S_{i}(f)=\varnothing$.
3. $\left.f\right|_{F-S_{1}(F)}$ is an immersion, i.e. it is a local embedding.
4. Locally, around every $y \in \Sigma_{2}(f)$ the set $\Sigma_{2}(f)$ is the arc of intersection of two sheets of $f(F)$ intersecting transversely. E.g. if $y \in \Sigma_{2}(f) \cap \operatorname{int}(M)$ then it is as in the following figure:

Exercise 8.6. Show that up to a small homotopy, every PL map f can be made into a PL map in general position.
@ Simple double curves, and how to resolve them.
Exercise 8.7. Show that the the following diagram describes the singularities for some map $f: \mathbb{D}^{2} \rightarrow M$ in general position. The bold lines are the points in $S_{2}(f)$, arcs with same label are sent by f to the same arc in M (in the same orientation as indiacted).

8.2 Tower construction

The basic idea is that instead of resolving singularities in M it might be easier to resolve singularities in a cover. To help up produce such cover we need the following lemma.
Lemma 8.8. Let M be a compact 3-manifold with non-empty boundary. If some component of ∂M is not a sphere, then M has a (connected) double cover.

Exercise 8.9. Prove the lemma. [Hint: enough to show that $H_{1}(M) \simeq H^{1}(M) \neq 0$. Since there is a component $F \subset \partial M$ which is not a sphere, $H_{1}(F) \neq 0$. Take a non-trivial element $c \in H_{1}(F)$, either c is non-trivial in $H_{1}(M)$ and we are done, or it is the boundary of some element f in $C_{2}(M)$. Use f and Poincaré Duality to show that then $H^{1}(M) \neq 0$ (Hint: you can double M to make it closed)]
@ Proof of the Loop Theorem

