
8 Dehn’s Lemma, the Loop and Sphere Theorems

The following 3 theorems are perhaps among the most important basic theorems in 3-
manifold topology. What they all have in common is that we assume the existence of some
(“non-trivial”) map f from a disk or a sphere into M and we want to turn it into an
embedding g (with similar “non-triviality” assumption). The existence of such an embed-
ding is what turns many (algebraic/homotopic) properties of 3-manifolds into combinato-
rial/topological ones.

Theorem 8.1 (Dehn’s Lemma, Papakyriakopoulos). Let M be a 3-manifold, and let f ∶
D2 → M be a map which is injective on a small neighborhood U of @D2 and such that
f
−1
f(U) = U , then there exists an embedding g ∶ D2 →M such that g�@D2 = f �@D2 .

Theorem 8.2 (The Loop Theorem). Let M be a 3-manifold and F ⊂ @M a connected
sub-surface. If ⇡1(F ) → ⇡1(M) is not injective then, there exists an embedding g ∶ D2 �M

such that g�@D2 is a non-trivial element in ⇡1(F ).
Theorem 8.3 (The Sphere Theorem). Let M be an orientable 3-manifold, if f ∶ S2 →M is
continuous and cannot be extended continuously to D3 →M then there exists an embedding
g ∶ S2 �M with the same property. In particular, M is reducible.

@ ⇡n(X), and stronger formulations of the theorems.

Exercise 8.4. Deduce Dehn’s lemma from the loop theorem. [Hint: remove a small regular
neighborhood of f(@D2) and apply the loop theorem.]

Exercise 8.5. Deduce the following: Let F ⊂ M be a 2-sided embedded surface, then if
F is not ⇡1-injective, then there exists an essential simple closed curve in F (i.e., a simple
closed curve that does not bound a disk in F ) which bounds a disk D in M such that
D ∩ F = @D. [Hint: Let f ∶ (D2

,@D2) → (M,F ) be in general position to F , show that
f
−1(F ) is a collection of simple closed curves, take an innermost curve c ⊂ f

−1(F ), show
that either f(c) is inessential in F in which case the number of components of f−1(F ) can
be reduced or using the loop theorem one gets the desired curve.]

For the proof of the loop theorem the main idea is to start with a map f ∶ D2 → M

which is in general position (see below). Such a map will have singularities - i.e., points
where its image intersects itself. The idea is to try to replace f by a new map which has
less singularities until all are gone and we get an embedding. This is done using two tools:
‘cut and paste techniques’, and a ‘tower construction’.

8.1 Singularities of maps

Let F be a compact surface, M a 3-manifold. Let f ∶ (F,@F ) → (M,@M) be a PL map.
Define S(f) ⊂ F to be the closure of points x ∈ F such that #(f−1f(x)) > 1. Define

Si(f) = {x ∈ S(f) � #(f−1(f(x))) = i}, and ⌃i(f) = f(Si(f)).
Note that S1(f) is not necessarily empty.

A map f ∶ F →M is in general position if:

1. S1(f) and S3(f) are finite.
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2. for all i ≥ 4, Si(f) = �.
3. f �F−S1(F ) is an immersion, i.e. it is a local embedding.

4. Locally, around every y ∈ ⌃2(f) the set ⌃2(f) is the arc of intersection of two sheets of
f(F ) intersecting transversely. E.g. if y ∈ ⌃2(f)∩ int(M) then it is as in the following
figure:

y

⌃2(f)

Exercise 8.6. Show that up to a small homotopy, every PL map f can be made into a PL
map in general position.

@ Simple double curves, and how to resolve them.

Exercise 8.7. Show that the the following diagram describes the singularities for some map
f ∶ D2 →M in general position. The bold lines are the points in S2(f), arcs with same label
are sent by f to the same arc in M (in the same orientation as indiacted).

x

x
y

y

z

z

w

w

u

u

v

v

8.2 Tower construction

The basic idea is that instead of resolving singularities in M it might be easier to resolve
singularities in a cover. To help up produce such cover we need the following lemma.

Lemma 8.8. Let M be a compact 3-manifold with non-empty boundary. If some component
of @M is not a sphere, then M has a (connected) double cover.

Exercise 8.9. Prove the lemma. [Hint: enough to show that H1(M) � H1(M) ≠ 0. Since
there is a component F ⊂ @M which is not a sphere, H1(F ) ≠ 0. Take a non-trivial element
c ∈H1(F ), either c is non-trivial in H1(M) and we are done, or it is the boundary of some
element f in C2(M). Use f and Poincaré Duality to show that then H

1(M) ≠ 0 (Hint: you
can double M to make it closed)]

@ Proof of the Loop Theorem
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