I Equivalent definitions of hyperbolic spaces

1. Thin triangles

Def: let X be a metric sp. let $x_{1}, x_{2}, y_{3} \in X$. The triangle inequality guarates that \exists a tripod $\hat{a},-<\sum_{i} \hat{x}_{1}$ such that $d\left(x_{i}, x_{j}\right)=d\left(\hat{x}_{i}, \hat{z}_{j}\right)$.
We will call it the comparison tripod. $T\left(\hat{x}_{1}, \hat{z}_{2}, \hat{z}_{3}\right)$
If X is geodesic, we can define a map $\Delta\left(x_{1}, x_{2}, x_{3}\right) \xrightarrow{t} T\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}\right)$ by sending each geodesic to the corr. geodesic in T.
A triangle Δ is called δ-thin of $\forall p \in T \quad \operatorname{diam}\left(t^{-1}(\rho)\right) \leq \delta$.
The insize of $\Delta \operatorname{issize}(\Delta)$ is diam $\left(t^{-1}(0)\right)$.
The pts of $t^{-1}(0)$ are called the internal pts of Δ, and denoted i_{1}, i_{2}, i_{3} according to the vertex they are opposite to.

Thin let x be a geodesic mss. TFAE:

1. $\exists \delta_{1}$ such that all triangles are δ_{1}-slim.
2. $\exists \delta_{2}$-•- δ_{2} thin
3. $\exists \delta_{3} \rightarrow$ tue insize $(\Delta) \leq \delta_{3}$

Pf: $2 \Rightarrow 1$ is obvious.
$\underline{\rightarrow 3}$: let $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ be a good triang. by hypothesis it is δ_{1}-dim. let i_{1}, i_{2}, i_{3} be its internal pts. i_{1} is δ_{1} close to some pt p on $\left[x_{1}, x_{2}\right]$ or $\left[x_{1}, x_{3}\right]$. say $p \in\left[x_{1}, x_{2}\right]$.
By the triangle equality $\left|d\left(x_{1}, p\right)-d\left(x_{1}, i_{1}\right)\right| \leqslant \delta_{\text {. }}$.
since $d\left(x_{2}, i_{1}\right)=d\left(x_{2}, i_{3}\right)$ it fellows that $\left|d\left(a_{1}, p\right)-d\left(x_{1} i_{3}\right)\right| \leq \delta_{1}$ and $d\left(p, i_{3}\right) \leq \delta_{1}$ (sue thy ore on the same geod)

$$
\Rightarrow d\left(i_{1}, i_{3}\right) \leq 2 \delta_{i}
$$

Similarly $d\left(i_{2},\left\{i_{1}, i_{3}\right\}\right) \leq 2 \delta_{1}$. and to $\operatorname{diam}\left\{i_{1}, i_{2}, i_{3}\right\} \leq 4 \delta_{1}$. $3 \Rightarrow 2$: let $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ be a geod Δ.
let y_{2}, y_{3} be the $=$ preimages of a pt $p \in T\left(x_{1}, x_{2}, x_{3}\right)$
(FLOG $p \in\left[\hat{x}_{1}, 0\right] \quad p \neq 0$.). WTS $d\left(y_{1}, y_{2}\right) \leq \delta_{2}$ fo sane δ_{2}.
Let $x_{3}^{\prime} \in\left[y_{3}, x_{3}\right]$ be reach that $d\left(x_{3}^{\prime}, x_{2}\right)=d\left(x_{3}^{\prime}, x_{1}\right)-d\left(y_{2}, x_{1}\right)$ Therefore, y_{2}, y_{3} are the internal pto of $\Delta\left(x_{1}, x_{2}, x_{3}^{\prime}\right)$ and it follows by hypothesis that $d\left(y_{2}, y_{3}\right) \leq r_{3}$.

Ex: Show that these are equivalent to:
$\exists \delta_{4}$ such that dill triples $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ satisfy

$$
\inf \left\{\operatorname{diam}\left\{p_{1}, p_{2}, p_{3}\right\} \mid p_{i} \in\left[x_{i+1}(3), x_{i+2(3)}\right]\right\} \leqslant \delta_{y} \text {. }
$$

2. The Gromou product

Def: let X be a metric op. let $x, y, w \in X$
we define $(x \cdot y)_{w}=\frac{1}{2}(d(x, w)+d(y, w)-d(x, y))$.
or equivalently $d(w, 0)$ in $T(x, y, w)$.
Note that $d(w,[x, y)] \leq(x \cdot y)_{w}+i n s i z e \Delta$. If Δ is δ thin h then

$$
\left|d(w,[x, y])-(x, y)_{w}\right| \leq \delta
$$

Def: let X be a metric sp. we say that X is (δ)-mpperbotic if $\forall x, y, z, \omega$ we have:

$$
(x \cdot y)_{\omega} \geqslant \min \left\{(x \cdot z)_{N},(y \cdot z)_{N}\right\}-\delta .
$$

Note that this does not assume that X is geodesic.
Ex: If $\exists \omega$ sit $巴$ holds $\forall x, y, z$ then it holds $\forall x, y, z, \omega$ replacim $\delta b_{y} \delta \delta$.
Expander the expressions in \& we get

$$
d(x, y)+d(z, w) \leq \max \{d(x, z)+d(y, w), d(y, z)+d(x, w)\}+2 \delta \text {. }
$$

In other words, we look at the "tetrahedron" x, y, z, w.
and we sum the lengths of opposite sides.
FLOG $S:=d(x, z)+d y, w) \leq M:=d(y, z)+d(x, w) \leq L:=d(x, y)+d(z, w)$

Then \otimes tells us that $L \leq M+2 \delta$.
Thu: let X be geodesic then $\exists \delta$ st $x_{i} \delta$-lypertorlic $\Longleftrightarrow \exists \delta^{\prime}$ set. it is
(8^{\prime})-hyportoolic.
Pf: \Rightarrow : Assume $W \omega O G \quad S \leq M \leq L$ are as above. consider the comparison Δs

$$
\begin{aligned}
& M=d(z, y)+d(x, v)=a+b+c+d \\
& d(z, w)=a+c-l \\
& d(x, y) \leq \text { leyth of red path } \leq b+\delta+l+\delta+d=b+d+l+2 \delta \\
& \Rightarrow L=d(x, y)+d(z, w) \leq a+b+c+d+2 \delta=M+2 \delta .
\end{aligned}
$$

5 : let us denote by $x^{\prime}, y^{\prime}, z^{\prime}$ the internal pts of $\Delta(x, y, z)$. UTS $\quad d\left(x^{\prime}, y^{\prime}\right) \leqslant \delta$

Consider the 4 pto x, y, z, y^{\prime}.
Out of the 3 opposite pains the largest is $d\left(y, y^{\prime}\right)+d(x, z)$
sauce $d\left(y \cdot y^{\prime}\right) \geqslant d\left(y, z^{\prime}\right)=d\left(y, x^{\prime}\right)$. (the other pains are execth perimeter $/ 2$)
Hence, $\quad d(x, t)+d\left(y, y^{\prime}\right) \leqslant d(y, z)+d\left(x, y^{\prime}\right)+2 \delta^{\prime}$.
Simarly $d\left(x, x^{\prime}\right) \leq d\left(x, y^{\prime}\right)+2 \delta^{\prime}$.
Now, consider the 4 pts x, y, x^{\prime}, y :
The smallest of the sues is clearly $d\left(x, y^{\prime}\right)+d^{\prime}\left(y, x^{\prime}\right)$.
So by the 4 pt ineq

$$
d\left(x^{\prime}, y^{\prime}\right)+d(x, y) \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)-2 \delta^{\prime}
$$

(2) $d\left(x, y^{\prime}\right)+d\left(y, x^{\prime}\right)+6 \delta^{\prime} \leq d(x, y)+6 \delta^{\prime} \Rightarrow d\left(x^{\prime}, y^{\prime}\right) \leq 6 \delta^{\prime}=\delta \square$

Ex show that (d)-mppersbicity s art inv. corder qi for general mos. $($ hint: spiral ic line)
3. Approximating trees

Thm: X is geod. m.s. X is δ-hyperbolic iff $\forall n \exists C(n)$ such that $\forall x_{1}, \ldots, x_{n} \in X \quad \exists$ a tree T embedded in X such that its edges are geodesics and $d\left(x_{i}, x_{j}\right) \leq d_{T}\left(x_{i}, x_{j}\right)+C(n)$. (where d_{T} in the distance measured in the metic tree)
Ex: Prove \Leftarrow (hint: it is enough to consider 4 pts).
Def: a path $p:[a, b] \rightarrow X$ is τ-taut if length $(p) \leq d(p(a), p(b)) \cdot \tau$ where
Obs: If p is τ-taunt then it is a $(1, \tau)-q$.geodesic, and any smooth is τ-taut. (write p in unit speed per. so that $\operatorname{lomgth}(p[s, t])=t-s$,

$$
\begin{aligned}
& \quad \text { Now, } \quad \text { leith }(p(a, s))+\operatorname{lupth}(p(s, b))+\operatorname{leghth}(p[t, b]) \text {. } \\
& =\operatorname{leg} \text { th }(p) \leq d(p(a), p(b))+\tau \\
& \leqslant d(p(a), p(s))+d p(p(s), p(t))+d p(p t) \cdot p(b))+\tau \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow d(p(s), p(t)) \leq|t-s| \leq d(p(s), p(t))+\tau
\end{aligned}
$$

lemma: Let X be δ-hyp geodesic. Let α be a τ-taut path btw $x, y \in X$ Then $\exists \tau$ 'sit if y is the closest pt to some $z X$ on α then $\alpha \cup[y, z]$ is τ^{\prime}-taunt.
Pf: Recall that by stability of q geod. $\exists D$ such that α is D-close to a geodesic $[x, y]$. Let δ^{\prime} be such that insize $(\Delta) \leq \delta^{\prime}$.
claim: $(x, z)_{y} \leqslant \delta^{\prime}+D$.
since otherwise the internal pt $y^{\prime} \in[x, z]$ is at distance $>\delta^{\prime}+D$ from y,
but $d\left(y^{\prime}, z^{\prime}\right) \leq \delta^{\prime}$ and $\exists a \in \alpha$ sit. $d\left(z^{\prime}, \alpha\right) \leq D$ so overall $d(z, \alpha)<d(z, y)$. y.

$$
\begin{aligned}
\text { Thus length }(\alpha \cup[y, z]) & =\text { length } \alpha+\text { length }[y, z) \\
& \leq d(x, y)+\tau+d(y, z) \\
& \leq d\left(x, z^{\prime}\right)+\delta+D+\tau+d\left(z, y^{\prime}\right)+\delta+D . \\
& =d\left(x, y^{\prime}\right)+d\left(z, y^{\prime}\right)+2(\delta+D)+\tau=d(x, z)+2(\delta+D)+\tau
\end{aligned}
$$

If of thu: \Rightarrow By induction on n we build a $\tau(n)$-taut tree. I.e a tree chore arcs are $T(n)$-taunt.
If $n=2$, take $T_{2}=\left[x_{1}, x_{2}\right]$ it is 0 -taut.
for $n>2, x_{1} \ldots, x_{n} \in X$.
Assume we built T_{n-1}. for x_{1}, \ldots, x_{n-1}. Which is $\tau(n-1)$-taunt
let y be the closest pt to x_{n} in T_{n-1}.
Let $T_{n}=T_{n-1} \cup\left[x_{n}, y\right]$. It is clear that T_{n} is an embedded tree and io the lemma it is $\tau_{n}=\tau^{\prime}-\operatorname{tant}$.

