$$I = Equivalent definitions of hyperbolic spaces.
J. Thin triangles
Pef: let X be a metric sp. let $\alpha_{1,2,3,2} \in X$. The triangle inequality
guarates that $\exists a$ triped $\hat{a}_{1} = \begin{pmatrix} \hat{a}_{1} \\ \hat{a}_{2} \end{pmatrix}$ such that $d(e_{1}, a_{1}) = d(\hat{a}_{1}, \hat{a}_{2})$.
We will call it the comparison triped. $T(\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3})$
If X is geodesic, we can define a map $\Delta(\alpha_{1,23,23}) \stackrel{+}{\longrightarrow} T(\hat{a}_{1}, \hat{a}_{3}, \hat{a}_{3})$
by surding each geodesic to the corre geodesic $n T$.
A triangle Δ is called S-thin f $\forall peT$ diam $(t_{1}^{c}p) \leq S$.
The insize of Δ insize(Δ) is diam $(t_{1}^{c}o)$.
The insize of $t^{(1)}(o)$ are called the internal pto of Δ , and knowld $i_{1,1,2,1,3}$
according to the vertex they are opposite to.
 i_{3}
 i_{4}
 i_{3}
 i_{4}
 i_{5}
 i_{5}
 Ihm let X be a geodesic $m.$. $TFAE:$
1. $\exists S_{1}$ such that all triangles are S_{1} slim.
2. $\exists d_{2}$
 i_{4}
 i_{5}
 i_{6}
 i_{7}
 i_{7}
 i_{7}
 i_{7}
 i_{7}
 i_{8}
 i_{8}
 i_{8}
 i_{9}
 $i_{9}$$$

Pf:
$$z \Rightarrow 1$$
 is dovious.

$$1 \Rightarrow 3 : let \Delta(a, z, z_3) = a good triany. by imposflexis if is ξ -dim.
let i_1, i_2, i_3 be its internal pts. i_4 is δ_1 close to some pt
p on $[a_1, z_2] \propto [a_1, z_3]$. Soy $p\in[z_1, z_2]$.
By the triangle inequality $|d(a_1, p) - d(z_1, i_1)| = \delta_1$.
Since $d(a_{2,1}, i_1) = d(z_2, i_3)$ it follows that $|d(a_1, p) - d(z_1, i_3)| = \delta_1$
and $d(p, i_3) = \delta_1$ (since this one on the some good)
 $\Rightarrow d(i_1, i_3) = 2\delta_1$.$$

Similarly
$$d(k_{n}, j(k_{1}, i_{2})) \leq 2\delta$$
, and is $diam i_{1}^{j}$, i_{n} , $i_{n}^{j} \leq 4\delta$.
 $s \Rightarrow z: (kt \Delta(x_{1}, x_{n}, x_{n}))$ be a geod Δ .
 $(kt g_{2n}, y_{2n})$ be the z preimages of a pt $p \in T(x_{1}, x_{2n}, x_{2n})$
 $(wlob p \in [\hat{x}_{1}, 0] p \neq 0$.). $wTS d(y_{1}, y_{2n}) \leq \delta_{2n}$ the same ξ_{1} .
Let $x_{n}^{j} \leq [y_{2n}, x_{2n}]$ be such that $d(x_{n}^{j}, x_{n}) = d(x_{2n}^{j}, x_{n}) - d(y_{2n}, x_{n})$
Therefore, y_{2n}, y_{2n} are the internal pto of $\Delta(x_{1}, x_{2n}, x_{n}^{j})$ and it follows
by hypothesis that $d(y_{1}, y_{2n}) \leq \delta_{2n}$.
Ex: Show that there are equivalent to:
 $\exists \delta_{1}$ such that all trajkes $\Delta(x_{1}, x_{2n}, x_{2n})$ schifty
infidiam pr. $p_{1}p_{2n}^{j} > 1$ $p_{1} \in [x_{1}m(s_{2n}, x_{2n}s_{2n})] \leq \delta_{2n}$.
2. The Gromov product
Def: let X be a metric sp. let x_{2n} $w \in X$
we define $(x_{2n}, y_{2n}) = \frac{1}{2}(d(x_{2n})) + d(y_{2n}) - d(x_{2n}y_{2n})]$.
Or equivalently $d(\omega_{2n}, 0)$ in $T(x_{2n}, w_{2n})$.
Note that $d_{2n}(y_{2n}, y_{2n}) = \frac{1}{2}(d(x_{2n}, y_{2n}, y_{2n}) + d(x_{2n}))$.
Def: let X be a metric sp. we say that X is (δ) -hyperbolic if
 $V(x_{2n}, y_{2n}, w)$ we have:
 $(x_{2n}, y_{2n}) = win j(x_{2n}, y_{2n}) - \delta$.
Bude that this does not assume that X is geodesize.
Ex: If $\exists w$ sit $@$ holds $V(x_{2n}, x_{2n}) + d(y_{2n}) - d(x_{2n}) + d(x_{2n}) + 2\delta$.
Expending the expressions in $@$ we get
 $d(x_{2n}) + d(x_{2n}) = \max j d(x_{2n}) + d(y_{2n}) + d(y_{2n}) + d(y_{2n}) + d(x_{2n}) j + 2\delta$.
In other verds, we leads of the "tetrabedrom" x_{2n}, x_{2n}.
In other verds, we leads of the "tetrabedrom" x_{2n}, x_{2n}.
In other verds, we leads of the "tetrabedrom" x_{2n}, x_{2n}.
 w we we will be leads of the the "tetrabedrom" x_{2n}, x_{2n}.
 w

where
$$S = d(z,z) + d(y,w) \leq M := d(y,z) + d(z,w) \leq L := d(z,y) + d(z,w)$$

Then
$$\mathfrak{S}$$
 tells us that $L \leq M + 25$.
Then: (at X be gedess): then $\Im S$ is Xi S-hypolodic $\Longrightarrow \Im S'$ i.i. it is
(8)-hypolodic.
Pf: \Longrightarrow : Assume while $S \leq M \leq L$ are as above.
consider the comparison AS
 $M = d(z,y) + d(z,v) = a+b+c+d$
 $d(z,y) = a+c-d$
 $d(z,y) = bugh & c d path $\leq b+S + l+S + d = b+d+l+2S$
 $\Rightarrow L = d(z,y) + b(z,w) \leq a+b+c+d + 2S = M + 2S$.
 $\leq : \ (bt us denote by a; y; z' the interad pts $\notin \Delta(x_{ij},z)$.
 $VTS = b(z,y) = d(y,z') = d(y,z')$ (the data pairs are overly primites/2)
 $VTS = b(z,y) = d(y,z') = d(y,z') + d(z,y) + d(z,z)$
force $d(y,y') \geq d(y,z') = d(y,z') + d(z,z')$
 $(a,z) + d(z,w) \leq d(y,z') + 2S'$
 $\Rightarrow d(z,z) + d(z,y') = d(y,z') + 2S'$
Simbardy $d(z,z') = d(z,z') + zS'$.
 $Now, consolide the u pto z, y, z, y !
The undert d the up to z, y, z, y !
 $Now, consolide the u pto z, y, z, y !
 $Now, consolide the u pto z, y, z, y !
 $Now, consolide the u pto z, y, z, y !
 $Now, d(z, y') = d(z, z') + d(z, y') + d(y, z')$.
 $So by due u pt deg$
 $d(z', y') + d(z, y) \leq d(z, z') + 2S'$
 $Simbardy = d(z, z') + d(y, y') + 2S'$.
 $Now, for solide the u pto z, y, z, y !
 $Now, for solide the u pto z, y, z, y !
 $Now, for solide the u pto z, y, z, y !
 $Now, for solide the u pto z, y, z, y !
 $So by due u pt diage
 $d(z', y') + d(z, y) \leq d(z, z') + d(y, y') + 2S' = d(z, y') + 2$$$$$$$$$$$$