Hyperbolic 3-manifolds Lecture 2: Hyperbolic Dehn fillings

Nir Lazarovich

Technion

Group Actions, Geometry and Dynamics, 2022

N. Lazarovich (Technion)

#### 1) The Figure-eight knot complement

- 2 Ideal tetrahedra
- 3 Hyperbolic manifolds glued from ideal tetrahedra
- Developing maps and holonomy maps
- 5 Hyperbolic Dehn Fillings

# Table of Contents

#### The Figure-eight knot complement

- 2 Ideal tetrahedra
- 3 Hyperbolic manifolds glued from ideal tetrahedra
- 4 Developing maps and holonomy maps
- 5 Hyperbolic Dehn Fillings

## The figure-eight knot complement

Let *K* be the figure-eight knot<sup>1</sup>:



<sup>1</sup>jim.belk, from wikipedia

N. Lazarovich (Technion)

## The figure-eight knot complement – cont.

Consider the manifold  $M = \mathbb{S}^3 - K$ .

#### Claim

The manifold M is homeomorphic to the following gluing of two tetrahedra.

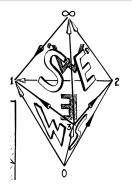
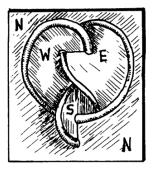


Figure: Picture by G. Francis, "A Topological Picturebook".

## The figure-eight knot complement – cont.

To see this, consider the following edges and disks:<sup>2</sup>

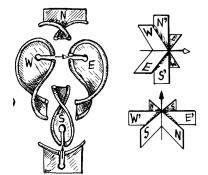


The two tetrahedra are the two 3-balls above and below the figure.

<sup>&</sup>lt;sup>2</sup>Francis G., "A Topological Picturebook".

## The figure-eight knot complement – cont.

Around each edge we see the following configuration<sup>3</sup>:



#### Exercise

Find the gluing of the two tetrahedra from these figures.

<sup>3</sup>Francis G., "A Topological Picturebook".

N. Lazarovich (Technion)

Hyperbolic 3-manifolds

Oholo 7 / 27

# Goal: Identify each tetrahedron with an ideal tetrahedron, and answer the following

- Why does it have finite volume ?
- Why is it hyperbolic ? ?
- Why is it complete ? ? ?

#### The Figure-eight knot complement

## Ideal tetrahedra

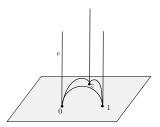
3 Hyperbolic manifolds glued from ideal tetrahedra

4 Developing maps and holonomy maps

5 Hyperbolic Dehn Fillings

## The parameter of an ideal tetrahedron

Given an ideal tetrahedron T and an edge e, up to an isometry of  $\mathbb{H}^3$  we can place T such that three of its vertices are  $0, \infty, 1$ , where the edge e connects 0 and  $\infty$ , and the fourth ideal vertex is some  $z(e) \in \mathbb{C}$  with  $\Im z(e) > 0$ .

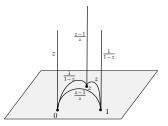


#### Exercise

Every ideal tetrahedron has finite volume.

#### Exercises

- z(e) does not depend on the orientation of e.
- If e, e' are opposite then z(e) = z(e').
- If z, z', z'' are the invariants of the three edges incident to a vertex of T, in clockwise order, then  $z' = \frac{z-1}{z}$  and  $z'' = \frac{1}{1-z}$ . In particular, they satisfy: zz'z'' = -1 and 1 z zz' = 0.



#### The Figure-eight knot complement

2 Ideal tetrahedra

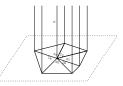
#### 3 Hyperbolic manifolds glued from ideal tetrahedra

4 Developing maps and holonomy maps

## 5 Hyperbolic Dehn Fillings

# The gluing condition

Assume M is glued from ideal tetrahedra.Let e be an edge of M, assume that  $T_1, \ldots, T_r$  are the tetrahedra of M that are cyclically glued around e, and let  $z_i$  be the invariant of the ideal tetrahedra  $T_i$  at the edge e.

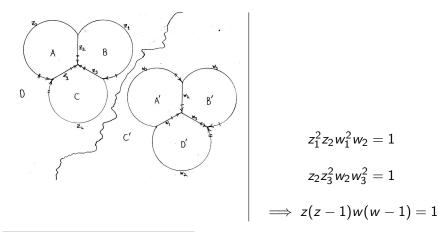


For *M* to have a hyperbolic metric we need to verify that the dihedral angles around *e* add up to  $2\pi$ . That is,  $\arg(z_1) + \cdots + \arg(z_r) = 2\pi$ .

But this does not suffice, we need to make sure that when going around an edge the accumulated gluing makes sense. This amounts to checking that  $z_1 \dots z_r = 1$ .

# Gluing condition for fig-8

Recall that the figure-eight knot complement  $M = \mathbb{S}^3 - K$  is the gluing of two tetrahedra  $M = T \cup T'$ . Assume each is ideal, with parameters  $z = z_1, z_2, z_3$  and  $w = w_1, w_2, w_3$  as follows<sup>4</sup>:



<sup>4</sup>Thurston W., "The Geometry and Topology of Three-Manifolds".

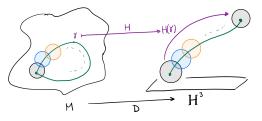
#### The Figure-eight knot complement

- 2 Ideal tetrahedra
- **3** Hyperbolic manifolds glued from ideal tetrahedra
- Developing maps and holonomy maps

## 5 Hyperbolic Dehn Fillings

# The developing and holonomy maps

Given a hyperbolic metric M we can consider its *developing map*  $D: \widetilde{M} \to \mathbb{H}^3$  defined by sending a neighborhood of some point in M to a neighborhood of a point in  $\mathbb{H}^3$  and continuing the map along paths so that it is a local isometry.



The developing map is equivariant with respect to the holonomy map  $H : \pi_1(M) \to \mathsf{PSL}_2(\mathbb{C}).$ 

#### Exercise

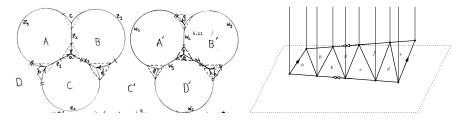
Verify that H is a well-defined homomorphism, and that the D is well-defined and H-equivariant.

N. Lazarovich (Technion)

To check that the metric is complete, it suffices to check that a small neighborhood N of the ideal vertex of M is a cusp. This happens if and only if the holonomy image  $H(\pi_1(N))$  of  $\pi_1(N)$  is a discrete parabolic subgroup, that is, it lands in the subgroup  $P = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\}$  (up to conjugation).

Since *N* is homeomorphic to a small neighborhood of *K* in  $\mathbb{S}^3 - K$  it is homeomorphic to  $\mathbb{T}^2 \times \mathbb{R}$ , and  $\pi_1(N) \simeq \mathbb{Z}^2$ .

Explicitly, the developing map of N given as follows<sup>5</sup>:

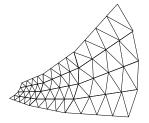


We see that the holonomy image  $H(\pi_1(N))$  fixes the point  $\infty$ , i.e. it is in the subgroup  $B = \left\{ \begin{pmatrix} z & * \\ 0 & z^{-1} \end{pmatrix} \right\}$ . The group B acts on  $\mathbb{C}^2$  by affine linear transformation  $\{z \mapsto az + b\}$ . It lands in P if and only if the affine transformations are translations (i.e. a = 1).

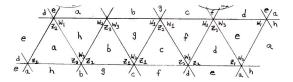
<sup>5</sup>Thurston, "The Geometry and Topology of Three-Manifolds" A State of the second stat

## The developing map around an ideal vertex

If it does not land in P the developing map will look like:



Let us compute the linear part (the derivative) of the holonomy:



 $H'(x) = \left(\frac{z}{w}\right)^2$  and H'(y) = w(1-z).

To summarize, for the gluing of tetrahedra to be hyperbolic and complete we need to satisfy:

hyperbolic: 
$$z(z-1)w(w-1) = 1$$
  $\Im(z) > 0, \Im(w) > 0$   
complete:  $\left(\frac{z}{w}\right)^2 = H'(x) = 1$   $w(1-z) = H'(y) = 1$ 

We see that  $z_0 = w_0 = e^{2\pi i/3}$  is the only solution to all equations. Note that this is exactly the parameter of the regular ideal tetrahedron.

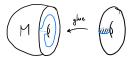
This completes the proof that the Figure-eight knot complement has a finite-volume hyperbolic metric.

#### The Figure-eight knot complement

- 2 Ideal tetrahedra
- 3 Hyperbolic manifolds glued from ideal tetrahedra
- 4 Developing maps and holonomy maps
- 5 Hyperbolic Dehn Fillings

#### Definition

Let M be a compact manifold with tori boundaries. M' is a *Dehn filling* of M if it is obtained from M by gluing solid tori to (some of) its boundary components.



#### Theorem (Lickorish – Wallace)

Any closed orientable 3-manifold can be obtained by Dehn filling a link complement.

**Goal:** Hyperbolic Dehn fillings of the figure-eight knot complement.

< □ > < 凸

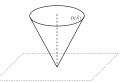
## Incomplete metrics

Let us analyze further the case of incomplete metrics on M. That is, H'(x), H'(y) are not both 1

Both H(x), H(y) fix  $\infty$  and since they are commuting contracting (or expanding) maps they both fix one point in  $\mathbb{C}^2$ . WLOG, let this point be 0.

So the holonomy simply consists of linear maps  $(z \mapsto az)$ , and is determined by  $H(\cdot)' : \pi_1(N) \to \mathbb{C}^*$ . This map can be lifted to  $\widetilde{H} : \pi_1(N) \to \widetilde{\mathbb{C}^*} \simeq \mathbb{C}^2$  (where the last map is log map).

It stabilizes the geodesic  $\eta$  connecting  $0, \infty$  (the *z*-axis), and the action of  $g \in \pi_1(N)$  on  $\eta$  is given by H(g).t = |H'(g)|t. Finally, the developing image  $D(\tilde{N}) = C - \eta$  where C is, WLOG, the cone around the *z*-axis  $\eta$ :



If there are generators a, b for  $\pi_1(N) \simeq \mathbb{Z}^2$  so that  $\widetilde{H}(a) = \pm 2\pi i$ . Then  $\pi_1(N)$  acts discretely and freely on C.

The completion of  $C - \eta$  is the full cone C. By moding out by  $\pi_1(N)$  we get that the completion  $\overline{N}$  of N is the hyperbolic solid torus C/N (obtained by adding a circle  $\eta/N$  to N).

Thus, the completion  $\overline{M}$  of M is a Dehn filling. Note also that the curve described by a is the slope of the filling.

Given  $\widetilde{H}(x), \widetilde{H}(y)$  there are unique  $\alpha, \beta \in \mathbb{R}$  (up to sign) so that

$$\alpha \widetilde{H}(x) + \beta \widetilde{H}(b) = \pm 2\pi i.$$

Thus, to find hyperbolic Dehn fillings it suffices to find a **primitive pair of integers**  $(\alpha, \beta) \in \mathbb{Z}^2$ , because in this case  $a = \alpha x + \beta y$  is part of a generating set a, b for  $\pi_1(N)$  which has the desired properties. Summary, for the figure-eight knot complement: Given the parameter w for one of the ideal tetrahedra we get

• 
$$\rightsquigarrow z$$
  
•  $\rightsquigarrow \widetilde{H}(x), \widetilde{H}(y)$   
•  $\rightsquigarrow (\alpha, \beta).$ 

So we get a map  $S: w \mapsto \alpha + i\beta \in \mathbb{C}$ , we can extend it to  $w_0$  by sending  $S(w_0) = \infty \in \overline{\mathbb{C}}$ .

This map  $S: U \to \overline{\mathbb{C}}$  is analytic in the neighborhood of  $w_0$ , and so S(U) is a neighborhood of  $\infty$  in  $\mathbb{C}$ . Therefore, for all but finite many primitive pairs  $(\alpha, \beta) \in \mathbb{Z}^2$  we have  $\alpha + i\beta \in S(U)$ .

## Theorem (Thurston's Hyperbolic Dehn Filling)

Let M be a compact manifold with tori boundaries  $\partial M = T_1 \cup \ldots \cup T_r$ . If  $M - \partial M$  admits a complete (finite-volume) hyperbolic metric then with the exception of finitely many slopes for each  $1 \le i \le r$ , the Dehn filling of M' is hyperbolic.