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Mostow Rigidity Theorem

We saw that in dimension 2 there are many (6g − 6 dimensional) different
hyperbolic metrics on a given closed surface of genus g ≥ 2.

Theorem (Mostow-Prasad Rigidity Theorem)

Let n ≥ 3, and let M,M ′ be finite volume complete hyperbolic
n-manifolds, then any homotopy equivalence f : M → M ′ is (homotopic)
to an isometry M → M ′.

Corollary

Let n ≥ 3, and let M,M ′ be finite volume complete hyperbolic
n-manifolds, then any isomorphism f : π1(M)→ π1(M ′) is induced from
an isometry M → M ′.

Corollary

Any isomorphism between (torsion-free) lattices in PSL2(C) comes from a
conjugation in PSL2(C).
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Lifting to H3

We will prove the theorem for closed hyperbolic 3-manifolds.

Let f : M → M ′ be the homotopy equivalence, and let f ′ : M ′ → M be its
homotopy inverse (i.e. f ′ ◦ f ' idM , and f ′ ◦ f ' idM′). Up to a small
homotopy, we may assume that both f , f ′ are Lipschitz.

The map F lifts to an (f∗-)equivariant Lipschitz map between the universal
covers

F : M̃ = H3 → H3 = M̃ ′.
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Quasi-isometry

Lemma

The map F is a quasi-isometry:there exists L > 1,C ≥ 0 such that for all
x , y ∈ H3, L−1d(x , y)− C ≤ d(F (x),F (y)) ≤ Ld(x , y) + C .

Proof.

The right inequality follows because F is Lipschitz.
The homotopy H between idM and f ′ ◦ f lifts to a homotopy H̃ between
idH3 and F ′ ◦ F .
In particular, since M is compact, there is some C such that
d(x ,F ′ ◦ F (x)) ≤ D for all x ∈ H3.
Therefore,

d(x , y) ≤ d(F ′ ◦ F (x),F ′ ◦ F (y)) + 2D ≤ Ld(F (x),F (y)) + 2D

and the inequality follows.
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The Morse Lemma

Lemma (The Morse Lemma)

There exist R such that for every geodesic segment γ in H3 there exists a
geodesic γ′ at (Hausdorff) distance R from F (γ).

Corollary (Boundary map)

The map F : H3 → H3 defines a f∗-equivariant map ∂F : ∂H3 → ∂H3.

Proof of the Corollary.

Let x ∈ ∂H3,let γ be any geodesic ray ending in x . Then F (γ) stays a
bounded distance from some geodesic ray η. The corresponding endpoint
of η is ∂F (x). This is well-defined since any two geodesics ending in x are
at bounded distance, and so are their images.
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Morse Lemma – cont.

Proof.

Assume first that γ is finite. Let β = F (γ), and Let γ′ be the geodesic
segment connecting its endpoints.

x1 x2

β

γ′

σ

r

Let Nr (γ′) be the r neighborhood of γ′. Then, if σ is a subsegment of β
outside Nr (η) with endpoints on ∂Nr (γ′) then its projection to γ′ has
length ≤ length(σ)/ cosh(r).
It follows that the subsegments of β outside η are bounded, as otherwise it
would be more efficient to travel via η (at length
≤ 2r + length(σ)/ cosh(r)) contradicting the quasi-isometry inequality.
By enlarging r , there exists R such that β ⊂ Nr (η).
If β is infinite just take subsegments of β converging to β and get the
desired geodesic as the limits of the corresponding γ′.
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Next we would like to prove that the map ∂F is continuous.

Lemma (More Morse)

There exists C such that for every geodesic line γ, and perpedicular plane
P to γ. The projection of F (P) to the geodesic γ′ (from the Morse
Lemma) has bounded diameter.

γ

P F (P )

γ′
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Proof
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Continuity

Lemma

The map ∂F is continuous.

γ

P F (P )

γ′
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Quasi-conformal mappings

Definition

A homeomorphism h : C̄→ C̄ is quasi-conformal if there exists K such
that for all z ∈ C̄

lim
r→0

sup {d(h(x), h(y))}
inf {d(h(x), h(y))}

≤ K

where x , y run over all antipodal points on the sphere of radius r around z .

Remark

The map h is conformal if and only if K = 1. Every conformal
homeomorphisms of C̄ is a M obius transformation.

Exercise

Show that ∂F is quasi-conformal.
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The proof of Mostow rigidity

Summary, we saw that the map f : M → M ′ induces a map F : H3 → H3

which is equivariant, and a quasi-conformal map ∂F : C̄→ C̄ which is
equivariant with respect to f∗ : π1(M) =: Γ→ Γ′ := π1(M ′).

Theorem (Bers)

Every quasi-conformal map C̄→ C̄ is a.e differentiable (as a real function).

At almost every point one can consider the derivative of ∂F .
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Proof of Mostow rigidity – cont.

Theorem (Double ergodicity on the boundary)

The diagonal action Γ y (C̄)2 is ergodic. In particular, Γ y C̄ is ergodic.

Proof.

To every pair of distinct points in (C̄)2 there is a geodesic in H3

connecting them. So, up to measure zero, (C̄)2 = PSL2(C)/A where

A =

{(
z 0
0 z−1

)}
.The action Γ y PSL2(C)/A is ergodic if and only if

the action Γ\PSL2(C) x A is ergodic.But this is exactly the ergodicity of
the geodesic flow!

The set of points in which ∂F is conformal is Γ-invariant measurable subset
of C̄. By ergodicity, ∂F is either a.e. conformal or a.e. non-conformal.

N. Lazarovich (Technion) Hyperbolic 3-manifolds Oholo 17 / 18



Proof of Mostow rigidity – cont.

If the map ∂F is a.e. non-conformal, then at a.e point we can consider the
line field of the direction that is stretched the most by the derivative d∂F .
This is a Γ-invariant measurable line field on C̄.

For a.e two points x , y ∈ C̄, consider the two circles that pass through x , y
and are tangent to the line fields at x and y respectively. The angle
between them is a Γ-invariant measurable function on (C̄)2.By double
ergodicity, this function is constant, but this is not possible.

Finally, if ∂F is conformal, then it is an element of g ∈ PSL2(C). This
element conjugates the action of Γ and Γ′. completing the proof.
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