Hyperbolic 3-manifolds Lecture 3: Mostow Rigidity

Nir Lazarovich

Technion

Group Actions, Geometry and Dynamics, 2022

N. Lazarovich (Technion)

Hyperbolic 3-manifolds

Oholo 1 / 18

- 2 The Morse Lemma and the Boundary map
- Quasi-conformal maps
- From ergodicity to rigidity

2 The Morse Lemma and the Boundary map

- 3 Quasi-conformal maps
- 4 From ergodicity to rigidity

Mostow Rigidity Theorem

We saw that in dimension 2 there are many (6g - 6 dimensional) different hyperbolic metrics on a given closed surface of genus $g \ge 2$.

Theorem (Mostow-Prasad Rigidity Theorem)

Let $n \ge 3$, and let M, M' be finite volume complete hyperbolic *n*-manifolds, then any homotopy equivalence $f : M \to M'$ is (homotopic) to an isometry $M \to M'$.

Corollary

Let $n \ge 3$, and let M, M' be finite volume complete hyperbolic *n*-manifolds, then any isomorphism $f : \pi_1(M) \to \pi_1(M')$ is induced from an isometry $M \to M'$.

Corollary

Any isomorphism between (torsion-free) lattices in $PSL_2(\mathbb{C})$ comes from a conjugation in $PSL_2(\mathbb{C})$.

We will prove the theorem for closed hyperbolic 3-manifolds.

Let $f: M \to M'$ be the homotopy equivalence, and let $f': M' \to M$ be its homotopy inverse (i.e. $f' \circ f \simeq id_M$, and $f' \circ f \simeq id_{M'}$). Up to a small homotopy, we may assume that both f, f' are Lipschitz.

The map F lifts to an (f_*-) equivariant Lipschitz map between the universal covers

$$F: \widetilde{M} = \mathbb{H}^3 \to \mathbb{H}^3 = \widetilde{M}'.$$

Lemma

The map F is a quasi-isometry:there exists $L > 1, C \ge 0$ such that for all $x, y \in \mathbb{H}^3$, $L^{-1}d(x, y) - C \le d(F(x), F(y)) \le Ld(x, y) + C$.

Proof.

The right inequality follows because F is Lipschitz.

The homotopy H between id_M and $f' \circ f$ lifts to a homotopy \widetilde{H} between $\operatorname{id}_{\mathbb{H}^3}$ and $F' \circ F$.

In particular, since M is compact, there is some C such that $d(x, F' \circ F(x)) \leq D$ for all $x \in \mathbb{H}^3$.

Therefore,

$$d(x,y) \leq d(F' \circ F(x), F' \circ F(y)) + 2D \leq Ld(F(x), F(y)) + 2D$$

and the inequality follows.

< □ > < □ > < □ > < □ > < □ > < □ >

2 The Morse Lemma and the Boundary map

- 3 Quasi-conformal maps
- 4 From ergodicity to rigidity

Lemma (The Morse Lemma)

There exist R such that for every geodesic segment γ in \mathbb{H}^3 there exists a geodesic γ' at (Hausdorff) distance R from $F(\gamma)$.

Corollary (Boundary map)

The map $F : \mathbb{H}^3 \to \mathbb{H}^3$ defines a f_* -equivariant map $\partial F : \partial \mathbb{H}^3 \to \partial \mathbb{H}^3$.

Proof of the Corollary.

Let $x \in \partial \mathbb{H}^3$, let γ be any geodesic ray ending in x. Then $F(\gamma)$ stays a bounded distance from some geodesic ray η . The corresponding endpoint of η is $\partial F(x)$. This is well-defined since any two geodesics ending in x are at bounded distance, and so are their images.

(日) (四) (日) (日) (日)

Morse Lemma – cont.

Proof.

Assume first that γ is finite. Let $\beta = F(\gamma)$, and Let γ' be the geodesic segment connecting its endpoints.

Let $N_r(\gamma')$ be the *r* neighborhood of γ' . Then, if σ is a subsegment of β outside $N_r(\eta)$ with endpoints on $\partial N_r(\gamma')$ then its projection to γ' has length $\leq \text{length}(\sigma)/\cosh(r)$.

It follows that the subsegments of β outside η are bounded, as otherwise it would be more efficient to travel via η (at length

 $\leq 2r + \text{length}(\sigma)/\cosh(r))$ contradicting the quasi-isometry inequality. By enlarging r, there exists R such that $\beta \subset N_r(\eta)$.

If β is infinite just take subsegments of β converging to β and get the desired geodesic as the limits of the corresponding γ' .

N. Lazarovich (Technion)

2 The Morse Lemma and the Boundary map

Quasi-conformal maps

4 From ergodicity to rigidity

Next we would like to prove that the map ∂F is continuous.

Lemma (More Morse)

There exists C such that for every geodesic line γ , and perpedicular plane P to γ . The projection of F(P) to the geodesic γ' (from the Morse Lemma) has bounded diameter.

Proof

イロト イヨト イヨト イヨト

Lemma

The map ∂F is continuous.

Definition

A homeomorphism $h : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is *quasi-conformal* if there exists K such that for all $z \in \overline{\mathbb{C}}$ $\lim_{r \to 0} \frac{\sup \{d(h(x), h(y))\}}{\inf \{d(h(x), h(y))\}} \leq K$

where x, y run over all antipodal points on the sphere of radius r around z.

Remark

The map *h* is conformal if and only if K = 1. Every conformal homeomorphisms of $\overline{\mathbb{C}}$ is a M obius transformation.

Exercise

Show that ∂F is quasi-conformal.

2 The Morse Lemma and the Boundary map

- 3 Quasi-conformal maps
- 4 From ergodicity to rigidity

Summary, we saw that the map $f: M \to M'$ induces a map $F: \mathbb{H}^3 \to \mathbb{H}^3$ which is equivariant, and a quasi-conformal map $\partial F: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ which is equivariant with respect to $f_*: \pi_1(M) =: \Gamma \to \Gamma' := \pi_1(M')$.

Theorem (Bers)

Every quasi-conformal map $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is a.e differentiable (as a real function).

At almost every point one can consider the derivative of ∂F .

Theorem (Double ergodicity on the boundary)

The diagonal action $\Gamma \curvearrowright (\overline{\mathbb{C}})^2$ is ergodic. In particular, $\Gamma \curvearrowright \overline{\mathbb{C}}$ is ergodic.

Proof.

To every pair of distinct points in $(\overline{\mathbb{C}})^2$ there is a geodesic in \mathbb{H}^3 connecting them. So, up to measure zero, $(\overline{\mathbb{C}})^2 = \text{PSL}_2(\mathbb{C})/A$ where $A = \left\{ \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix} \right\}$. The action $\Gamma \curvearrowright \text{PSL}_2(\mathbb{C})/A$ is ergodic if and only if the action $\Gamma \setminus \text{PSL}_2(\mathbb{C}) \curvearrowleft A$ is ergodic. But this is exactly the ergodicity of the geodesic flow!

The set of points in which ∂F is conformal is Γ -invariant measurable subset of $\overline{\mathbb{C}}$. By ergodicity, ∂F is either a.e. conformal or a.e. non-conformal.

If the map ∂F is a.e. non-conformal, then at a.e point we can consider the line field of the direction that is stretched the most by the derivative $d\partial F$. This is a Γ -invariant measurable line field on $\overline{\mathbb{C}}$.

For a.e two points $x, y \in \overline{\mathbb{C}}$, consider the two circles that pass through x, yand are tangent to the line fields at x and y respectively. The angle between them is a Γ -invariant measurable function on $(\overline{\mathbb{C}})^2$.By double ergodicity, this function is constant, but this is not possible.

Finally, if ∂F is conformal, then it is an element of $g \in PSL_2(\mathbb{C})$. This element conjugates the action of Γ and Γ' . completing the proof.