Hyperbolic 3-manifolds Lecture 4: Hyperbolization, Geometrization and knots

Nir Lazarovich

Technion

Group Actions, Geometry and Dynamics, 2022

2 Hyperbolic knots

2 Hyperbolic knots

Theorem (Thurston's Hyperbolization Theorem)

If M is a closed (orientable) irreducible atoroidal Haken 3-manifold then M has a complete hyperbolic metric.

Remarks

• There is a version of this theorem for manifolds with boundary.

• As a corollary of Perelman's Geometrization Theorem the assumption that M is Haken can be replaced by $\pi_1(M)$ is infinite.

Definition

- A manifold *M* is *irreducible* if every \mathbb{S}^2 bounds a 3-ball.
- A closed manifold *M* is *atoroidal* if there is no embedded torus which is π_1 -injective.
- A closed orientable irreducible 3-manifold M is *Haken* if it contains an embedded orientable surface $S \subseteq M$ (which is not a sphere) and is π_1 -injective.

Ingredients of the proof of Hyperbolization:

Strategy: Haken Hierarchy.

Fact

If M has non trivial homology then M is Haken, in particular, if M has boundary (and it is not a 3-ball) then M is Haken.

If M contains such an incompressible surface then M can be cut along this surface to obtain a manifold with boundary, continue cutting until M reduces to a union of 3-balls. This process is a *Haken hierarchy* for M.

Idea: Prove that M has a complete hyperbolic structure by induction on the depth of the hierarchy.

Inductive step:

Cut *M* along *S* to obtain *M'*. There are two copies of *S*, $S_{\pm} \subset \partial M'$, let M_{\pm} be the corresponding connected components of *M'* (possibly $M_{+} = M_{-}$).

By the induction hypothesis $M' - \partial M'$ has a complete hyperbolic metric.

Strategy: (1) Glue the manifolds M_+ , M_- along S_+ , S_- after (2) deforming the given metric on M_+ and M_- so that (3) the metric on S_+ , S_- agree.

E.g. if the surfaces S_- , S_+ are geodesic, and the identification $S_- = S_+$ is an isometry, then M_- , M_+ can be glued.

N. Lazarovich (Technion)

Hyperbolic 3-manifolds

Oholo 7 / 20

Limit sets and Ahlfors' Finiteness

By the induction hypothesis, for each component C of M' there is a discrete subgroup $\Gamma \leq \mathsf{PSL}_2(\mathbb{C})$ with $\Gamma \simeq \pi_1(C)$ such that $\mathbb{H}^3/\Gamma \cong C$.

The **limit set** $\Lambda(\Gamma)$ is the set of accumulation points on $\partial \mathbb{H}^3$ of an orbit Γ .*o* of $o \in \mathbb{H}^3$. We assume that $\Lambda(\Gamma)$ is connected.¹

Let $\Omega = \partial \mathbb{H}^3 - \Lambda(\Gamma)$ be the domain of discontinuity of Γ .

Theorem (Ahlfors' finiteness theorem)

If $\Gamma = \pi(M')$ is finitely generated Kleinian group, then Ω/Γ is a collection of finitely many surfaces, each of which homeomorphic to a boundary component of M'.

¹Picture by Curt McMullen

N. Lazarovich (Technion)

(1) Gluing: Maskit's combination theorem

Let $\Sigma_{\pm} \leq \Gamma_{\pm}$ be the subgroups corresponding to $\pi_1(S_{\pm}) \leq \pi_1(M_{\pm})$, and assume that they are *quasi-Fuchsian* – i.e. their limit set is a Jordan curve.²

Theorem (Maskit's Combination Theorem)

Assume further that $\Gamma_{+} \cap \Gamma_{-} = \Sigma = \Sigma_{\pm}$, and that Ω_{\pm} are components of $\partial \mathbb{H}^{3} - \Lambda \Sigma$ and that they are precisely invariant under Σ in Γ_{\pm} respectively. Then $\langle \Gamma_{+}, \Gamma_{-} \rangle = \Gamma_{+} *_{\Sigma} \Gamma_{-}$ is a discrete subgroup of $\mathsf{PSL}_{2}(\mathbb{C})$.

A similar theorem exists for the HNN case

²Chris King, https://dhushara.com/DarkHeart/quasif/quasi.htm $\leftarrow \equiv \leftarrow \leftarrow \equiv \rightarrow$

N. Lazarovich (Technion)

Given a discrete torsion-free subgroup $\Gamma \leq \mathsf{PSL}_2(\mathbb{C})$ and $M = \mathbb{H}^3/\Gamma$. Assume $\Lambda\Gamma$ is connected.

Theorem (Bers' Isomorphism)

There is an identification between deformations (by quasi-conformal mapping) of Γ and the Teichmüller space of all complex structures on Ω/Γ .

Note that in particular, if S is a surface, $\Gamma = \pi_1(S)$ is quasi-Fuchsian, then $\Lambda\Gamma$ is a Jordan curve and Ω is a pair of open disks. By Bers' Isomorphism the group Γ is described by a pair of complex structure on S. (Simultaneous Uniformization)

Case 1. $M' \not\cong S \times [0,1]$:

By the induction hypothesis $M' - \partial M'$ has a complete hyperbolic metric, moreover, each of S_{\pm} is quasi-Fuchsian.

Let us define the *skinning map* σ : A complex structure X_+ on S_+

determines a hyperbolic structure on M_+ . The hyperbolic metric on M_+ determines a pair of complex structures on S_+ one of which is X_+ and the other is denoted $\sigma(X_+)$.

We want to find complex structures (X_+, X_-) so that

 $(X_-, X_+) = \tau \sigma(X_-, X_+)$, where τ is the identification switching S_+ and S_- .

Theorem (Thurston)

If $M' \not\cong S \times [0,1]$, the map $\tau \circ \sigma$ has a fixed point.

イロト イヨト イヨト ・

The fibered manifold case

Case 2. $M' = S \times [0, 1]$: In this case M is a fibered 3-manifold, and it is given by $M = S \times [0, 1]/(x, 1) \sim (\phi(x), 0)$ for some homeomorphism ϕ of S. $\pi_1(M) = \pi_1(S) \rtimes \mathbb{Z} = \langle \pi_1(S), t | tht^{-1} = \phi_*(h) \forall h \in \pi_1(S) \rangle$. Moreover, since M is atoroidal, the homeomorphism is of a special kind called *pseudo-Anosov*.

Goal: find a discrete faithful representation $\rho : \pi_1(M) \to \mathsf{PSL}_2(\mathbb{C})$. To do so, we find a representation $\rho : \pi_1(S) \to \mathsf{PSL}_2(\mathbb{C})$ and show that there is some $g \in \mathsf{PSL}_2(\mathbb{C})$ such that $g\rho g^{-1} = \rho \phi_*$.

Theorem (Thurston)

The map ϕ_* has a fixed point in the space of discrete faithful representations of $\pi_1(S) \to \mathsf{PSL}_2(\mathbb{C})$

イロト イヨト イヨト -

Thurston's Hyperbolization

Corollary

If a knot K is not a torus knot and not a satellite knot, then $\mathbb{S}^3 - K$ has a complete hyperbolic metric of finite volume.

• A Torus knot is a closed curve on the standard torus in \mathbb{S}^3 :

• A satellite knot is a knot that can be constructed as follows:

Detecting hyperbolic knots from diagrams

Theorem (Menasco)

Let K be a prime alternating knot, then either K is a torus knot or K is hyperbolic.

Theorem (L.-Moriah-Pinsky, Futer-Purcell for 6-highly-twisted)

If K has a connected, prime, twist-reduced, 3-highly-twisted knot diagram (with at least two twists regions) then K is hyperbolic.

Let K be a knot as in the theorem.

Goal: show that $M = \mathbb{S}^3 - K$ is atoroidal.

Place the knot K on the projection plane P, so that at every crossing you put a "bubble". The torus intersects each bubble in a stack of saddles:

Let P_+ (resp. P_-) be the plane P with the upper (lower) hemispheres of the bubbles. Consider the curves of intersection of $T \cap P_{\pm}$.

Proof – cont.

One can compute the Euler characteristic of T from the curves of intersection with P_{\pm} by:

$$0 = \chi(T) = \sum_{c \subset T \cap P_{\pm}} \chi_{+}(c)$$

where $\chi_+(c) = (1 - \frac{1}{4} \# \{\text{bubbles c meets}\})$. For some curves $\chi_+(c) > 0$.

Idea: Define $\chi'(c)$ in such a way that the positive contributions are distributed among other curves so that now:

$$0 = \chi(\mathcal{T}) = \sum_{c \subset \mathcal{T} \cap \mathcal{P}_{\pm}} \chi'(c) \quad \text{and} \quad \chi'(c) \leq 0.$$

It follow that $\chi'(c) = 0$ for all curves, a case by case analysis shows that T must be parallel to the knot.

Thurston's Hyperbolization

2 Hyperbolic knots

< 円H

Theorem (JSJ decomposition, Jaco-Shalen, Johannson)

Every closed irreducible 3-manifold M has a disjoint collection of tori T_1, \ldots, T_n such that the components of $M - \bigcup_i T_i$ are atoroidal or SFS (Seifert fibered spaces).

Theorem (Perelman, Thurston for Haken manifolds)

Every closed irreducible 3-manifold M has a disjoint collection of tori T_1, \ldots, T_n such that each component of $M - \bigcup_i T_i$ has a finite volume complete structure of one of the 8 Thurston geometries:

$$\mathbb{S}^3, \quad \mathbb{E}^3, \quad \mathbb{H}^3, \quad \mathbb{S}^2 \times \mathbb{R}, \quad \mathbb{H}^2 \times \mathbb{R}, \quad \mathsf{P}\widetilde{\mathsf{SL}_2(\mathbb{R})}, \quad \textit{Nil}, \quad \textit{Sol}.$$

Thank You!

and...

Thanks to the organizers for the great workshop!

N. Lazarovich (Technion)

Hyperbolic 3-manifolds

Oholo 20 / 20