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Theorem (Killing–Hopf)

For every n ≥ 2 and κ ∈ R there is exactly one simply connected,
complete Riemannian manifold of dimension n with constant sectional
curvature κ. Up to rescaling, they are:

κ = 0, En = Euclidean space.

κ = 1, Sn = Spherical space.

κ = −1, Hn = Hyperbolic space.

The hyperbolic n-space Hn can be defined as follows:

Hn = {(x1, . . . , xn) ∈ Rn | xn > 0}

equipped with the metric

ds2 =
dx21 + · · ·+ dx2n

x2n
.

N. Lazarovich (Technion) Hyperbolic 3-manifolds Oholo 4 / 25



Hyperbolic geometry in dimension 2

In dimension 2, we can identify H2 with the set
{z = x1 + x2i ∈ C | =(z) = x2 > 0}.
The group PSL2(R) = SL2(R)/{±I}y H2 by Möbius transformations(

a b
c d

)
.z =

az + b

cz + d

Exercise

This action preserves the hyperbolic metric

ds2 =
dx21 + dx22
=(z)2

and it is the full group of orientation preserving isometries of H2.
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Hyperbolic geometry in dimension 3

In dimension 3, one can consider the quaternions
H = {z = x11 + x2i + x3j + x4k | a, b, c , d ∈ R}, and consider the set

H3 = {x11 + x2i + x3j | x3 > 0} .

Now, the group PSL2(C) = SL2(C)/{±I}y H3 by(
a b
c d

)
.z = (az + b)(cz + d)−1.

PSL2(C) is the group of orientation preserving isometries of the metric

ds2 =
dx21 + dx22 + dx23

x23
.

Let us denote ∂H3 = C̄ = C ∪ {∞}.
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Geodesics in H3

Geodesics in Hn are circular arcs (and lines) which are perpendicular to
∂H3.
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Isometries of H3

By Jordan’s Theorem, each matrix in PSL2(C) is conjugate to:

hyperbolic

(
a 0
0 a−1

)
with |a| > 1.

elliptic

(
a 0
0 ā

)
with |a| = 1.

parabolic

(
1 1
0 1

)
.

Exercise

How do they act on H3 and on ∂H3?
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Hyperbolic manifold

We will say that an oriented Riemannian manifold M is hyperbolic if it has
sectional curvature −1 at every point.

If M is a complete hyperbolic manifold then M̃ ' Hn. The action of M on
its universal cover by deck transformations gives an isomorphism
π1(M)→ Γ where Γ is a discrete subgroup of Isom(Hn) and M ' Hn/Γ.
Discrete subgroups of PSL2(C) are called Kleinian groups.

Exercise

Any finite subgroup F of PSL2(C) fixes a point in H3. [Hint: show that F
preserves some inner-product in C2.]

Therefore if M is a complete hyperbolic 3-manifold then π1(M) is torsion
free.
Conversely, every discrete torsion-free subgroup Γ of PSL2(C) is the
fundamental group of the complete hyperbolic 3-manifold M = H3/Γ.
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We will mostly care about finite volume (or even closed) hyperbolic
3-manifolds.

Definition

A lattice Γ ≤ G is a discrete subgroup of finite co-volume (i.e. G/Γ has a
finite G -invariant Radon measure). A lattice is uniform if G/Γ is compact.

Fact

The manifold M has finite volume (resp. closed) if and only if Γ = π1(M)
is a lattice (resp. uniform lattice) in PSL2(C).
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Algebraic constructions

Theorem (Borel – Harish-Chandra)

Let G be an algebraic group defined over Q without Q characters, then
G(Z) is a lattice in G(R). In particular, if there exists an epimorphism
f : G(R)→ PSL2(C) with compact kernel then f (G(Z)) is a lattice in
PSL2(C).

Examples

1 PSL2(Z[i ]) is a lattice in PSL2(C).

2 PSL2(Z[ω]) where ω = e2πi/3 is a lattice in PSL2(C).

3 Bianchi groups: Let d > 0 be a square-free integer, then PSL2(Od) is
a lattice in PSL2(C), where Od is the ring of integers of Q[

√
−d ].

4 G = SO(x21 + x22 + x23 −
√

2x24 ) can be defined over Q so that
G(R) ' SO(3, 1)× SO(4). Now consider the map G(R)→ SO(3, 1)
and note that SO(3, 1) ' SL2(C).
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Algebraic constructions – cont.

To get a torsion free lattice we can use the following:

Theorem (Selberg)

Every finitely generated linear group (over a field with characteristic zero)
has a finite index torsion-free subgroup.

This is cheating... We want to start with a manifold and “discover” a
hyperbolic metric.
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Closed hyperbolic surfaces

Let’s start in dimension 2. Let Sg be the closed surface of genus g ≥ 2.
We can cut the surface along 3g − 3 curves into pairs of pants.

Each of the pairs of pants we cut along the 3 seams to obtain two
hexagons.
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Closed hyperbolic surfaces – cont.

Each hexagon can be realized as a right-angled hyperbolic hexagon (with
geodesic edges).

Finally, gluing them back together, one obtains a hyperbolic closed surface.

Moreover, each such surface is given by the lengths of the 3g − 3 curves,
and additional 3g − 3 twist parameters.

These are the 6g − 6 Fenchel-Nielsen coordinates for the moduli space of
all hyperbolic metrics on a surface of genus g .
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Finite volume hyperbolic surfaces

Let Σ = S2 − {a, b, c} be the thrice punctured sphere.Cut Σ along arcs
α, β connecting a, b to c to obtain a quadrilateral whose vertices are
removed:

Realize the quadrilateral as a hyperbolic quadrilateral with ‘ideal’ vertices:

Now glue them using isometries of H2, to obtain a hyperbolic metric on Σ.
There are 3 degrees of freedom in this construction (1 for the choice of the
of the ideal quadrilateral, and 2 for the choice of the isometries).
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Finite volume hyperbolic surfaces – cont.

But, as some of you might know, the moduli space of Σ is a point.

Oops!

Some of the hyperbolic metrics we got are NOT COMPLETE!!!
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Cusps

Exercise

Check that if all the gluing maps around a, b and c(!) are parabolic then
the metric is complete.

The neighborhood of the points a, b, c in the complete hyperbolic metric
are cusps:

Definition

A cusp of M is a submanifold that is isometric to a neighborhood of
∞ ∈ ∂Hn in the quotient Hn/Γ for some discrete paraboloic subgroup
Γ ≤ Hn which acts cocompactly on ∂Hn − {∞}.

Fact

Every complete finite-volume hyperbolic manifold M has finitely many
cusps K1, . . . ,Kr such that M −

⋃
Ki is compact.
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The figure-eight knot complement

Let K be the figure-eight knot1:

1jim.belk, from wikipedia
N. Lazarovich (Technion) Hyperbolic 3-manifolds Oholo 20 / 25



The figure-eight knot complement – cont.

Consider the manifold M = S3 − K .

Claim

The manifold M is homeomorphic to the following gluing of two
tetrahedra.

Figure: Picture by G. Francis, “A Topological Picturebook”.
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The figure-eight knot complement – cont.

To see this, consider the following edges and disks:2

The two tetrahedra are the two 3-balls above and below the figure.

2Francis G., “A Topological Picturebook”.
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The figure-eight knot complement – cont.

Around each edge we see the following configuration3:

Exercise

Find the gluing of the two tetrahedra from these figures.

3Francis G., “A Topological Picturebook”.
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The figure-eight knot complement – cont.

Now, we can identify each tetrahedron with the regular ideal tetrahedron,
i.e. the tetrahedron whose vertices are ∞ and the vertices of an equilateral
triangle in C:

Figure: The regular ideal tetrahedron
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The figure-8 knot complement – cont.

We claim that this gives a complete finite volume hyperbolic metric on M.

Why does it have finite volume ?

Why is it hyperbolic ? ?

Why is it complete ? ? ?

To be continued...
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