Hyperbolic 3-manifolds

Lecture 1: hyperbolic geometry

Nir Lazarovich

Technion
Group Actions, Geometry and Dynamics, 2022

Table of Contents

(1) Hyperbolic geometry
(2) Hyperbolic structures
(3) Examples of hyperbolic 3-manifolds

Table of Contents

(1) Hyperbolic geometry

(2) Hyperbolic structures

(3) Examples of hyperbolic 3-manifolds

Theorem (Killing-Hopf)

For every $n \geq 2$ and $\kappa \in \mathbb{R}$ there is exactly one simply connected, complete Riemannian manifold of dimension n with constant sectional curvature κ. Up to rescaling, they are:

- $\kappa=0, \mathbb{E}^{n}=$ Euclidean space.
- $\kappa=1, \mathbb{S}^{n}=$ Spherical space.
- $\kappa=-1, \mathbb{H}^{n}=$ Hyperbolic space.

The hyperbolic n-space \mathbb{H}^{n} can be defined as follows:

$$
\mathbb{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}
$$

equipped with the metric

$$
d s^{2}=\frac{d x_{1}^{2}+\cdots+d x_{n}^{2}}{x_{n}^{2}}
$$

Hyperbolic geometry in dimension 2

In dimension 2, we can identify \mathbb{H}^{2} with the set
$\left\{z=x_{1}+x_{2} i \in \mathbb{C} \mid \Im(z)=x_{2}>0\right\}$.
The group $\mathrm{PSL}_{2}(\mathbb{R})=S L_{2}(\mathbb{R}) /\{ \pm l\} \curvearrowright \mathbb{H}^{2}$ by Möbius transformations

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

Exercise

This action preserves the hyperbolic metric

$$
d s^{2}=\frac{d x_{1}^{2}+d x_{2}^{2}}{\Im(z)^{2}}
$$

and it is the full group of orientation preserving isometries of \mathbb{H}^{2}.

Hyperbolic geometry in dimension 3

In dimension 3, one can consider the quaternions
$\mathrm{H}=\left\{z=x_{1} 1+x_{2} \mathrm{i}+x_{3} \mathrm{j}+x_{4} \mathrm{k} \mid a, b, c, d \in \mathbb{R}\right\}$, and consider the set

$$
\mathbb{H}^{3}=\left\{x_{1} 1+x_{2} i+x_{3} j \mid x_{3}>0\right\}
$$

Now, the group $\mathrm{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) /\{ \pm I\} \curvearrowright \mathbb{H}^{3}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=(a z+b)(c z+d)^{-1}
$$

$\mathrm{PSL}_{2}(\mathbb{C})$ is the group of orientation preserving isometries of the metric

$$
d s^{2}=\frac{d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}}{x_{3}^{2}}
$$

Let us denote $\partial \mathbb{H}^{3}=\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.

Geodesics in \mathbb{H}^{3}

Geodesics in \mathbb{H}^{n} are circular arcs (and lines) which are perpendicular to $\partial \mathbb{H}^{3}$.

Isometries of \mathbb{H}^{3}

By Jordan's Theorem, each matrix in $\mathrm{PSL}_{2}(\mathbb{C})$ is conjugate to:

- hyperbolic $\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$ with $|a|>1$.
- elliptic $\left(\begin{array}{ll}a & 0 \\ 0 & \bar{a}\end{array}\right)$ with $|a|=1$.
- parabolic $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Exercise

How do they act on \mathbb{H}^{3} and on $\partial \mathbb{H}^{3}$?

Table of Contents

(1) Hyperbolic geometry

(2) Hyperbolic structures

(3) Examples of hyperbolic 3-manifolds

Hyperbolic manifold

We will say that an oriented Riemannian manifold M is hyperbolic if it has sectional curvature -1 at every point.

If M is a complete hyperbolic manifold then $\widetilde{M} \simeq \mathbb{H}^{n}$. The action of M on its universal cover by deck transformations gives an isomorphism $\pi_{1}(M) \rightarrow \Gamma$ where Γ is a discrete subgroup of Isom $\left(\mathbb{H}^{n}\right)$ and $M \simeq \mathbb{H}^{n} / \Gamma$. Discrete subgroups of $\mathrm{PSL}_{2}(\mathbb{C})$ are called Kleinian groups.

Exercise

Any finite subgroup F of $\mathrm{PSL}_{2}(\mathbb{C})$ fixes a point in \mathbb{H}^{3}. [Hint: show that F preserves some inner-product in \mathbb{C}^{2}.]

Therefore if M is a complete hyperbolic 3-manifold then $\pi_{1}(M)$ is torsion free.
Conversely, every discrete torsion-free subgroup Γ of $\mathrm{PSL}_{2}(\mathbb{C})$ is the fundamental group of the complete hyperbolic 3-manifold $M=\mathbb{H}^{3} / \Gamma$.

We will mostly care about finite volume (or even closed) hyperbolic 3-manifolds.

Definition

A lattice $\Gamma \leq G$ is a discrete subgroup of finite co-volume (i.e. G / Γ has a finite G-invariant Radon measure). A lattice is uniform if G / Γ is compact.

Fact

The manifold M has finite volume (resp. closed) if and only if $\Gamma=\pi_{1}(M)$ is a lattice (resp. uniform lattice) in $P S L_{2}(\mathbb{C})$.

Table of Contents

(1) Hyperbolic geometry

(2) Hyperbolic structures

(3) Examples of hyperbolic 3-manifolds

Algebraic constructions

Theorem (Borel - Harish-Chandra)

Let \mathbb{G} be an algebraic group defined over \mathbb{Q} without \mathbb{Q} characters, then $\mathbb{G}(\mathbb{Z})$ is a lattice in $\mathbb{G}(\mathbb{R})$. In particular, if there exists an epimorphism $f: \mathbb{G}(\mathbb{R}) \rightarrow \mathrm{PSL}_{2}(\mathbb{C})$ with compact kernel then $f(\mathbb{G}(\mathbb{Z}))$ is a lattice in $\mathrm{PSL}_{2}(\mathbb{C})$.

Examples

(1) $\mathrm{PSL}_{2}(\mathbb{Z}[i])$ is a lattice in $\mathrm{PSL}_{2}(\mathbb{C})$.
(2) $\operatorname{PSL}_{2}(\mathbb{Z}[\omega])$ where $\omega=e^{2 \pi i / 3}$ is a lattice in $\mathrm{PSL}_{2}(\mathbb{C})$.
(3) Bianchi groups: Let $d>0$ be a square-free integer, then $\mathrm{PSL}_{2}\left(\mathcal{O}_{d}\right)$ is a lattice in $\mathrm{PSL}_{2}(\mathbb{C})$, where \mathcal{O}_{d} is the ring of integers of $\mathbb{Q}[\sqrt{-d}]$.
(9) $\mathbb{G}=\mathrm{SO}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-\sqrt{2} x_{4}^{2}\right)$ can be defined over \mathbb{Q} so that $\mathbb{G}(\mathbb{R}) \simeq \operatorname{SO}(3,1) \times \mathrm{SO}(4)$. Now consider the map $\mathbb{G}(\mathbb{R}) \rightarrow \mathrm{SO}(3,1)$ and note that $\mathrm{SO}(3,1) \simeq \mathrm{SL}_{2}(\mathbb{C})$.

Algebraic constructions - cont.

To get a torsion free lattice we can use the following:

Theorem (Selberg)

Every finitely generated linear group (over a field with characteristic zero) has a finite index torsion-free subgroup.

This is cheating... We want to start with a manifold and "discover" a hyperbolic metric.

Closed hyperbolic surfaces

Let's start in dimension 2. Let S_{g} be the closed surface of genus $g \geq 2$. We can cut the surface along $3 g-3$ curves into pairs of pants.

Each of the pairs of pants we cut along the 3 seams to obtain two hexagons.

Closed hyperbolic surfaces - cont.

Each hexagon can be realized as a right-angled hyperbolic hexagon (with geodesic edges).

Finally, gluing them back together, one obtains a hyperbolic closed surface.
Moreover, each such surface is given by the lengths of the $3 g-3$ curves, and additional $3 g-3$ twist parameters.

These are the $6 g-6$ Fenchel-Nielsen coordinates for the moduli space of all hyperbolic metrics on a surface of genus g.

Finite volume hyperbolic surfaces

Let $\Sigma=\mathbb{S}^{2}-\{a, b, c\}$ be the thrice punctured sphere. Cut Σ along arcs α, β connecting a, b to c to obtain a quadrilateral whose vertices are removed:

Realize the quadrilateral as a hyperbolic quadrilateral with 'ideal' vertices:

Now glue them using isometries of \mathbb{H}^{2}, to obtain a hyperbolic metric on Σ. There are 3 degrees of freedom in this construction (1 for the choice of the of the ideal quadrilateral, and 2 for the choice of the isometries).

Finite volume hyperbolic surfaces - cont.

But, as some of you might know, the moduli space of Σ is a point.

Oops!

Some of the hyperbolic metrics we got are NOT COMPLETE!!!

Cusps

Exercise

Check that if all the gluing maps around a, b and $c(!)$ are parabolic then the metric is complete.

The neighborhood of the points a, b, c in the complete hyperbolic metric are cusps:

Definition

A cusp of M is a submanifold that is isometric to a neighborhood of $\infty \in \partial \mathbb{H}^{n}$ in the quotient \mathbb{H}^{n} / Γ for some discrete paraboloic subgroup $\Gamma \leq \mathbb{H}^{n}$ which acts cocompactly on $\partial \mathbb{H}^{n}-\{\infty\}$.

Fact

Every complete finite-volume hyperbolic manifold M has finitely many cusps K_{1}, \ldots, K_{r} such that $M-\bigcup K_{i}$ is compact.

The figure-eight knot complement

Let K be the figure-eight knot 1 :

The figure-eight knot complement - cont.

Consider the manifold $M=\mathbb{S}^{3}-K$.

Claim

The manifold M is homeomorphic to the following gluing of two tetrahedra.

Figure: Picture by G. Francis, "A Topological Picturebook".

The figure-eight knot complement - cont.

To see this, consider the following edges and disks: ${ }^{2}$

The two tetrahedra are the two 3-balls above and below the figure.
${ }^{2}$ Francis G., "A Topological Picturebook".

The figure-eight knot complement - cont.

Around each edge we see the following configuration ${ }^{3}$:

Exercise

Find the gluing of the two tetrahedra from these figures.
${ }^{3}$ Francis G., "A Topological Picturebook".

The figure-eight knot complement - cont.

Now, we can identify each tetrahedron with the regular ideal tetrahedron, i.e. the tetrahedron whose vertices are ∞ and the vertices of an equilateral triangle in \mathbb{C} :

Figure: The regular ideal tetrahedron

The figure-8 knot complement - cont.

We claim that this gives a complete finite volume hyperbolic metric on M.

- Why does it have finite volume ?
- Why is it hyperbolic? ?
- Why is it complete ? ? ?

To be continued...

